Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
import torch
|
5 |
from gradio_rich_textbox import RichTextbox
|
6 |
|
@@ -16,15 +16,35 @@ model_path = "NousResearch/Genstruct-7B"
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
17 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
18 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cuda', quantization_config=quantization_config)
|
|
|
|
|
19 |
|
20 |
@spaces.GPU
|
21 |
-
def generate_text(usertitle, content, max_length, temperature):
|
22 |
-
input_text = {'title': usertitle, 'content': content}
|
23 |
inputs = tokenizer.apply_chat_template(input_text, return_tensors='pt').cuda()
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def gradio_app():
|
30 |
with gr.Blocks() as demo:
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSequenceClassification, BitsAndBytesConfig
|
4 |
import torch
|
5 |
from gradio_rich_textbox import RichTextbox
|
6 |
|
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
17 |
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
18 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cuda', quantization_config=quantization_config)
|
19 |
+
rm_tokenizer = AutoTokenizer.from_pretrained('OpenAssistant/reward-model-deberta-v3-large-v2')
|
20 |
+
rm_model = AutoModelForSequenceClassification.from_pretrained('OpenAssistant/reward-model-deberta-v3-large-v2', torch_dtype=torch.bfloat16)
|
21 |
|
22 |
@spaces.GPU
|
23 |
+
def generate_text(usertitle, content, max_length, temperature, N=3):
|
24 |
+
input_text = {'title': usertitle, 'content': content}
|
25 |
inputs = tokenizer.apply_chat_template(input_text, return_tensors='pt').cuda()
|
26 |
+
generated_sequences = model.generate(inputs, max_new_tokens=max_length, temperature=temperature, num_return_sequences=N, do_sample=True)
|
27 |
+
decoded_sequences = tokenizer.batch_decode(generated_sequences, skip_special_tokens=True)
|
28 |
|
29 |
+
def extract_pair(resp):
|
30 |
+
try:
|
31 |
+
response = resp.split('[[[Content]]]')[1]
|
32 |
+
inst, resp = resp.split('[[[User]]]')[:2]
|
33 |
+
return inst.strip(), resp.strip()
|
34 |
+
except ValueError:
|
35 |
+
return "", ""
|
36 |
+
|
37 |
+
def score(resp):
|
38 |
+
inst, resp = extract_pair(resp)
|
39 |
+
with torch.no_grad():
|
40 |
+
inputs = rm_tokenizer(inst, resp, return_tensors='pt', truncation=True, max_length=512)
|
41 |
+
logits = rm_model(**inputs).logits
|
42 |
+
score = float(logits[0].cpu())
|
43 |
+
return score
|
44 |
+
|
45 |
+
best_sequence = max(decoded_sequences, key=score)
|
46 |
+
|
47 |
+
return best_sequence
|
48 |
|
49 |
def gradio_app():
|
50 |
with gr.Blocks() as demo:
|