Spaces:
Paused
Paused
import { pipeline } from "@xenova/transformers"; | |
export class SimpleVectorStore { | |
constructor() { | |
this.documents = []; | |
this.embeddings = []; | |
} | |
addDocument(embedding, document) { | |
this.embeddings.push(embedding); | |
this.documents.push(document); | |
} | |
async similaritySearch(queryEmbedding, topK) { | |
let scores = this.embeddings.map((emb, index) => ({ | |
score: cosineSimilarity(emb, queryEmbedding), | |
index: index | |
})); | |
// these are empty? | |
console.log('similaritySearch', queryEmbedding, scores, this.embeddings); | |
scores.sort((a, b) => b.score - a.score); | |
return scores.slice(0, topK).map(score => ({ | |
document: this.documents[score.index], | |
score: score.score | |
})); | |
} | |
} | |
export function cosineSimilarity(vecA, vecB) { | |
console.log('cosineSimilarity', vecA, vecB); | |
const dotProduct = vecA.reduce((acc, val, i) => acc + val * vecB[i], 0); | |
const magA = Math.sqrt(vecA.reduce((acc, val) => acc + val * val, 0)); | |
const magB = Math.sqrt(vecB.reduce((acc, val) => acc + val * val, 0)); | |
return dotProduct / (magA * magB); | |
} | |
class EmbeddingsWorker { | |
constructor(modelName = "Xenova/all-MiniLM-L6-v2") { | |
this.modelName = modelName; | |
this.client = null; | |
this.vectorStore = new SimpleVectorStore(); | |
} | |
async loadClient() { | |
if (!this.client) { | |
this.client = await pipeline("embeddings", this.modelName); | |
} | |
} | |
async _embed(texts) { | |
await this.loadClient(); | |
return Promise.all( | |
texts.map(async (text) => { | |
const response = await this.client(text, { | |
pooling: "mean", | |
normalize: true | |
}); | |
return response.data; | |
}) | |
); | |
console.log("Embeddings: ", embeddings); // Debugging: Check embeddings | |
} | |
async addDocumentsToStore(docs) { | |
const embeddings = await this._embed(docs); | |
embeddings.forEach((embedding, index) => { | |
console.log(embedding, index); | |
this.vectorStore.addDocument(embedding, docs[index]); | |
}); | |
} | |
async searchSimilarDocuments(query, topK) { | |
const queryEmbedding = await this._embed([query]); | |
console.log(queryEmbedding); | |
return this.vectorStore.similaritySearch(queryEmbedding[0], topK); | |
} | |
} | |
function testVectorStore() { | |
const store = new SimpleVectorStore(); | |
// Mock embeddings (simple vectors for testing) | |
const mockEmbeddings = [ | |
[1, 0, 0], | |
[0, 1, 0], | |
[0, 0, 1] | |
]; | |
// Add mock embeddings to the store | |
mockEmbeddings.forEach((emb, index) => { | |
store.addDocument(emb, `Document ${index + 1}`); | |
}); | |
// Test cosine similarity directly | |
const cosSimTest = cosineSimilarity([1, 0, 0], [0, 1, 0]); | |
console.log('Cosine Similarity Test:', cosSimTest); // Should be 0 for orthogonal vectors | |
// Perform a similarity search | |
const results = store.similaritySearch([1, 0, 0], 2); | |
console.log('Similarity Search Results:', results); | |
} | |
// Run the test function | |
testVectorStore(); |