Spaces:
Paused
Paused
File size: 9,081 Bytes
937b739 7fd9da3 937b739 76b8b87 937b739 6fd47d9 76b8b87 937b739 76b8b87 937b739 76b8b87 937b739 76b8b87 937b739 e38650f 937b739 e38650f 937b739 76b8b87 e38650f 937b739 76b8b87 937b739 e38650f 937b739 c980911 937b739 e38650f 937b739 76b8b87 937b739 76b8b87 937b739 76b8b87 937b739 76b8b87 937b739 e38650f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os
from langchain.llms import LlamaCpp
from llama_index import (
GPTVectorStoreIndex,
GPTListIndex,
ServiceContext,
ResponseSynthesizer,
LangchainEmbedding
)
from langchain.embeddings import HuggingFaceEmbeddings
from llama_index import download_loader, StorageContext, load_index_from_storage
from llama_index import (
Document,
LLMPredictor,
PromptHelper
)
from llama_index.indices.postprocessor import SimilarityPostprocessor
from llama_index.query_engine import RetrieverQueryEngine
from llama_index.storage.index_store import SimpleIndexStore
from llama_index.storage.docstore import SimpleDocumentStore
from llama_index.storage.storage_context import SimpleVectorStore
from googlesearch import search as google_search
from utils import *
import logging
import argparse
model_path = "wizardLM-7B.ggml.q5_0.bin"
def query_llm(index, prompt, service_context, retriever_mode='embedding', response_mode='compact'):
response_synthesizer = ResponseSynthesizer.from_args(
service_context=service_context,
node_postprocessors=[
SimilarityPostprocessor(similarity_cutoff=0.7)
]
)
retriever = index.as_retriever(retriever_mode=retriever_mode, service_context=service_context)
query_engine = RetrieverQueryEngine.from_args(retriever, response_synthesizer=response_synthesizer, response_mode=response_mode, service_context=service_context)
return query_engine.query(prompt)
def get_documents(file_src):
documents = []
logging.debug("Loading documents...")
print(f"file_src: {file_src}")
for file in file_src:
if type(file) == str:
print(f"file: {file}")
if "http" in file:
logging.debug("Loading web page...")
BeautifulSoupWebReader = download_loader("BeautifulSoupWebReader")
loader = BeautifulSoupWebReader()
documents += loader.load_data([file])
else:
logging.debug(f"file: {file.name}")
if os.path.splitext(file.name)[1] == ".pdf":
logging.debug("Loading PDF...")
CJKPDFReader = download_loader("CJKPDFReader")
loader = CJKPDFReader()
documents += loader.load_data(file=file.name)
else:
logging.debug("Loading text file...")
with open(file.name, "r", encoding="utf-8") as f:
text = add_space(f.read())
documents += [Document(text)]
return documents
def construct_index(
file_src,
index_name,
index_type,
max_input_size=2048,
num_outputs=2048,
max_chunk_overlap=20,
chunk_size_limit=None,
embedding_limit=None,
separator=" ",
num_children=10,
max_keywords_per_chunk=10
):
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
embedding_limit = None if embedding_limit == 0 else embedding_limit
separator = " " if separator == "" else separator
llm = LlamaCpp(
model_path=model_path,
n_ctx=4096,
use_mlock=True,
n_parts=-1,
temperature=0.7,
top_p=0.40,
last_n_tokens_size=100,
n_threads=8,
f16_kv=True,
max_tokens=150
)
llm_predictor = LLMPredictor(
llm=llm
)
prompt_helper = PromptHelper(
max_input_size,
num_outputs,
max_chunk_overlap,
embedding_limit,
chunk_size_limit,
separator=separator,
)
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
documents = get_documents(file_src)
try:
if index_type == "_GPTVectorStoreIndex":
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
else:
index = GPTListIndex.from_documents(documents, service_context=service_context)
index.storage_context.persist(persist_dir="./index")
except Exception as e:
print(e)
return None
newlist = refresh_json_list(plain=True)
return gr.Dropdown.update(choices=newlist, value=index_name)
def chat_ai(
index_select,
question,
prompt_tmpl,
refine_tmpl,
sim_k,
chat_tone,
context,
chatbot,
search_mode=[],
):
if index_select == "search" and search_mode==[]:
chatbot.append((question, "❗search"))
return context, chatbot
logging.info(f"Question: {question}")
temprature = 2 if chat_tone == 0 else 1 if chat_tone == 1 else 0.5
if search_mode:
index_select = search_construct(question, search_mode, index_select)
logging.debug(f"Index: {index_select}")
response = ask_ai(
index_select,
question,
prompt_tmpl,
refine_tmpl,
sim_k,
temprature,
context
)
print(response)
if response is None:
response = "Please upload a document first"
response = parse_text(response)
context.append({"role": "user", "content": question})
context.append({"role": "assistant", "content": response})
chatbot.append((question, response))
return context, chatbot
def ask_ai(
index_select,
question,
prompt_tmpl,
refine_tmpl,
sim_k=1,
temprature=0,
prefix_messages=[]
):
logging.debug("Querying index...")
prompt_helper = PromptHelper(
4096,
150,
-20000
)
llm = LlamaCpp(model_path=model_path,
n_ctx=4096,
use_mlock=True,
n_parts=-1,
temperature=temprature,
top_p=0.40,
last_n_tokens_size=100,
n_threads=4,
f16_kv=True,
max_tokens=200
)
embeddings = HuggingFaceEmbeddings()
embed_model = LangchainEmbedding(embeddings)
llm_predictor = LLMPredictor(
llm=llm
)
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model, prompt_helper=prompt_helper)
response = None
logging.debug("Using GPTVectorStoreIndex")
storage_context = StorageContext.from_defaults(
docstore=SimpleDocumentStore.from_persist_dir(persist_dir="./index"),
vector_store=SimpleVectorStore.from_persist_dir(persist_dir="./index"),
index_store=SimpleIndexStore.from_persist_dir(persist_dir="./index"),
)
if storage_context is not None:
index = load_index_from_storage(service_context=service_context, storage_context=storage_context)
response = query_llm(index, question, service_context)
if response is not None:
logging.info(f"Response: {response}")
ret_text = response.response
return ret_text
else:
logging.debug("No response found, returning None")
return None
def search_construct(question, search_mode, index_select):
print(f"You asked: {question}")
llm = LlamaCpp(model_path=model_path,
n_ctx=400,
use_mlock=True,
n_parts=-1,
temperature=1,
top_p=0.40,
last_n_tokens_size=100,
n_threads=6,
f16_kv=True,
max_tokens=100
)
chat = llm
search_terms = (
chat.generate(
[
f"Please extract search terms from the user’s question. The search terms is a concise sentence, which will be searched on Google to obtain relevant information to answer the user’s question, too generalized search terms doesn’t help. Please provide no more than two search terms. Please provide the most relevant search terms only, the search terms should directly correspond to the user’s question. Please separate different search items with commas, with no quote marks. The user’s question is: {question}"
]
)
.generations[0][0]
.text.strip()
)
search_terms = search_terms.replace('"', "")
search_terms = search_terms.replace(".", "")
links = []
for keywords in search_terms.split(","):
keywords = keywords.strip()
for search_engine in search_mode:
if "Google" in search_engine:
print(f"Googling: {keywords}")
search_iter = google_search(keywords, num_results=5)
links += [next(search_iter) for _ in range(10)]
if "Manual" in search_engine:
print(f"Searching manually: {keywords}")
print("Please input links manually. (Enter 'q' to quit.)")
while True:
link = input("Enter link:\n")
if link == "q":
break
else:
links.append(link)
links = list(set(links))
if len(links) == 0:
return index_select
print("Extracting data from links...")
print("\n".join(links))
search_index_name = " ".join(search_terms.split(","))
construct_index(links, search_index_name, "GPTVectorStoreIndex")
print(f"Index {search_index_name} constructed.")
return search_index_name + "_GPTVectorStoreIndex"
|