File size: 9,081 Bytes
937b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd9da3
937b739
 
76b8b87
937b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd47d9
76b8b87
937b739
 
 
 
 
 
 
 
 
 
 
76b8b87
 
 
937b739
 
 
 
76b8b87
 
937b739
76b8b87
937b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38650f
937b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38650f
937b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76b8b87
 
e38650f
937b739
 
76b8b87
937b739
 
 
 
e38650f
937b739
 
 
 
c980911
937b739
 
 
 
 
 
 
 
 
 
 
 
e38650f
 
 
937b739
 
 
 
 
 
 
 
 
 
 
 
 
76b8b87
937b739
 
76b8b87
937b739
76b8b87
 
937b739
76b8b87
937b739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38650f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
from langchain.llms import LlamaCpp
from llama_index import (
    GPTVectorStoreIndex,
    GPTListIndex,
    ServiceContext,
    ResponseSynthesizer,
    LangchainEmbedding
)
from langchain.embeddings import HuggingFaceEmbeddings
from llama_index import download_loader, StorageContext, load_index_from_storage
from llama_index import (
    Document,
    LLMPredictor,
    PromptHelper
)
from llama_index.indices.postprocessor import SimilarityPostprocessor
from llama_index.query_engine import RetrieverQueryEngine
from llama_index.storage.index_store import SimpleIndexStore
from llama_index.storage.docstore import SimpleDocumentStore
from llama_index.storage.storage_context import SimpleVectorStore

from googlesearch import search as google_search

from utils import *

import logging
import argparse

model_path = "wizardLM-7B.ggml.q5_0.bin"


def query_llm(index, prompt, service_context, retriever_mode='embedding', response_mode='compact'):
    response_synthesizer = ResponseSynthesizer.from_args(
        service_context=service_context,
        node_postprocessors=[
            SimilarityPostprocessor(similarity_cutoff=0.7)
        ]
    )
    retriever = index.as_retriever(retriever_mode=retriever_mode, service_context=service_context)
    query_engine = RetrieverQueryEngine.from_args(retriever, response_synthesizer=response_synthesizer, response_mode=response_mode,  service_context=service_context)
    return query_engine.query(prompt)


def get_documents(file_src):
    documents = []
    logging.debug("Loading documents...")
    print(f"file_src: {file_src}")
    for file in file_src:
        if type(file) == str:
            print(f"file: {file}")
            if "http" in file:
                logging.debug("Loading web page...")
                BeautifulSoupWebReader = download_loader("BeautifulSoupWebReader")
                loader = BeautifulSoupWebReader()
                documents += loader.load_data([file])
        else:
            logging.debug(f"file: {file.name}")
            if os.path.splitext(file.name)[1] == ".pdf":
                logging.debug("Loading PDF...")
                CJKPDFReader = download_loader("CJKPDFReader")
                loader = CJKPDFReader()
                documents += loader.load_data(file=file.name)
            else:
                logging.debug("Loading text file...")
                with open(file.name, "r", encoding="utf-8") as f:
                    text = add_space(f.read())
                    documents += [Document(text)]
    return documents


def construct_index(
    file_src,
    index_name,
    index_type,
    max_input_size=2048,
    num_outputs=2048,
    max_chunk_overlap=20,
    chunk_size_limit=None,
    embedding_limit=None,
    separator=" ",
    num_children=10,
    max_keywords_per_chunk=10
):
    chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
    embedding_limit = None if embedding_limit == 0 else embedding_limit
    separator = " " if separator == "" else separator

    llm = LlamaCpp(
        model_path=model_path,
        n_ctx=4096, 
        use_mlock=True,
        n_parts=-1, 
        temperature=0.7, 
        top_p=0.40,
        last_n_tokens_size=100,
        n_threads=8,
        f16_kv=True,
        max_tokens=150
    )
    llm_predictor = LLMPredictor(
        llm=llm
    )
    prompt_helper = PromptHelper(
        max_input_size,
        num_outputs,
        max_chunk_overlap,
        embedding_limit,
        chunk_size_limit,
        separator=separator,
    )
    service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
    documents = get_documents(file_src)

    try:
        if index_type == "_GPTVectorStoreIndex":
            index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context)
        else:
            index = GPTListIndex.from_documents(documents, service_context=service_context)
        index.storage_context.persist(persist_dir="./index")
    except Exception as e:
        print(e)
        return None

    
    newlist = refresh_json_list(plain=True)
    return gr.Dropdown.update(choices=newlist, value=index_name)


def chat_ai(
    index_select,
    question,
    prompt_tmpl,
    refine_tmpl,
    sim_k,
    chat_tone,
    context,
    chatbot,
    search_mode=[],
):
    if index_select == "search" and search_mode==[]:
        chatbot.append((question, "❗search"))
        return context, chatbot

    logging.info(f"Question: {question}")

    temprature = 2 if chat_tone == 0 else 1 if chat_tone == 1 else 0.5
    if search_mode:
        index_select = search_construct(question, search_mode, index_select)
    logging.debug(f"Index: {index_select}")
    response = ask_ai(
        index_select,
        question,
        prompt_tmpl,
        refine_tmpl,
        sim_k,
        temprature,
        context
    )
    print(response)

    if response is None:
        response = "Please upload a document first"
    response = parse_text(response)

    context.append({"role": "user", "content": question})
    context.append({"role": "assistant", "content": response})
    chatbot.append((question, response))

    return context, chatbot


def ask_ai(
    index_select,
    question,
    prompt_tmpl,
    refine_tmpl,
    sim_k=1,
    temprature=0,
    prefix_messages=[]
):
    logging.debug("Querying index...")
    prompt_helper = PromptHelper(
        4096,
        150,
        -20000
    )
    llm = LlamaCpp(model_path=model_path,
        n_ctx=4096, 
        use_mlock=True,
        n_parts=-1, 
        temperature=temprature, 
        top_p=0.40,
        last_n_tokens_size=100,
        n_threads=4,
        f16_kv=True,
        max_tokens=200
    )
    embeddings = HuggingFaceEmbeddings()
    embed_model = LangchainEmbedding(embeddings)
    llm_predictor = LLMPredictor(
        llm=llm
    )
    service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, embed_model=embed_model, prompt_helper=prompt_helper)
    response = None
    logging.debug("Using GPTVectorStoreIndex")
    storage_context = StorageContext.from_defaults(
        docstore=SimpleDocumentStore.from_persist_dir(persist_dir="./index"),
        vector_store=SimpleVectorStore.from_persist_dir(persist_dir="./index"),
        index_store=SimpleIndexStore.from_persist_dir(persist_dir="./index"),
    )
    if storage_context is not None:
        index = load_index_from_storage(service_context=service_context, storage_context=storage_context)
        response = query_llm(index, question, service_context)

    if response is not None:
        logging.info(f"Response: {response}")
        ret_text = response.response
        return ret_text
    else:
        logging.debug("No response found, returning None")
        return None


def search_construct(question, search_mode, index_select):
    print(f"You asked: {question}")
    llm = LlamaCpp(model_path=model_path,
        n_ctx=400, 
        use_mlock=True,
        n_parts=-1, 
        temperature=1, 
        top_p=0.40,
        last_n_tokens_size=100,
        n_threads=6,
        f16_kv=True,
        max_tokens=100
    )
    chat = llm
    search_terms = (
        chat.generate(
            [
                f"Please extract search terms from the user’s question. The search terms is a concise sentence, which will be searched on Google to obtain relevant information to answer the user’s question, too generalized search terms doesn’t help. Please provide no more than two search terms. Please provide the most relevant search terms only, the search terms should directly correspond to the user’s question. Please separate different search items with commas, with no quote marks. The user’s question is: {question}"
            ]
        )
        .generations[0][0]
        .text.strip()
    )
    search_terms = search_terms.replace('"', "")
    search_terms = search_terms.replace(".", "")
    links = []
    for keywords in search_terms.split(","):
        keywords = keywords.strip()
        for search_engine in search_mode:
            if "Google" in search_engine:
                print(f"Googling: {keywords}")
                search_iter = google_search(keywords, num_results=5)
                links += [next(search_iter) for _ in range(10)]
            if "Manual" in search_engine:
                print(f"Searching manually: {keywords}")
                print("Please input links manually. (Enter 'q' to quit.)")
                while True:
                    link = input("Enter link:\n")
                    if link == "q":
                        break
                    else:
                        links.append(link)
    links = list(set(links))
    if len(links) == 0:
        return index_select
    print("Extracting data from links...")
    print("\n".join(links))
    search_index_name = " ".join(search_terms.split(","))
    construct_index(links, search_index_name, "GPTVectorStoreIndex")
    print(f"Index {search_index_name} constructed.")
    return search_index_name + "_GPTVectorStoreIndex"