Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,23 @@ import chardet
|
|
11 |
from pathlib import Path
|
12 |
from detect_delimiter import detect
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
label_dict = {
|
15 |
0: "Brandsøgning",
|
16 |
1: "Informational",
|
@@ -19,7 +36,7 @@ label_dict = {
|
|
19 |
4: "Transactional"
|
20 |
}
|
21 |
upload_file = st.file_uploader("Choose a file",type="csv" )
|
22 |
-
model = pickle.load(open("finalized_model.sav","rb"))
|
23 |
|
24 |
if upload_file is not None:
|
25 |
result = chardet.detect(upload_file.getvalue())
|
|
|
11 |
from pathlib import Path
|
12 |
from detect_delimiter import detect
|
13 |
|
14 |
+
data = pd.read_csv("training_data.csv")
|
15 |
+
#Change Information - Sammenligning to information
|
16 |
+
data['Category'] = data['Category'].replace('Information - Sammenligning', 'Informational')
|
17 |
+
data['Category'] = data['Category'].replace('Information', 'Informational')
|
18 |
+
data = data.groupby('Category').apply(lambda x: x.sample(1500, replace=True)).reset_index(drop=True)
|
19 |
+
train_df = pd.DataFrame()
|
20 |
+
train_df['text'] = data['keywords']
|
21 |
+
train_df['labels'] = data['Category']
|
22 |
+
train_df['labels'] = train_df['labels'].astype('category').cat.codes
|
23 |
+
n_labels = len(train_df['labels'].unique())
|
24 |
+
from simpletransformers.ner import NERModel
|
25 |
+
from simpletransformers.classification import ClassificationModel
|
26 |
+
|
27 |
+
model = ClassificationModel('bert', 'Maltehb/danish-bert-botxo', num_labels=n_labels, use_cuda=True, args={'reprocess_input_data': True, 'overwrite_output_dir': True})
|
28 |
+
|
29 |
+
model.train_model(train_df)
|
30 |
+
|
31 |
label_dict = {
|
32 |
0: "Brandsøgning",
|
33 |
1: "Informational",
|
|
|
36 |
4: "Transactional"
|
37 |
}
|
38 |
upload_file = st.file_uploader("Choose a file",type="csv" )
|
39 |
+
#model = pickle.load(open("finalized_model.sav","rb"))
|
40 |
|
41 |
if upload_file is not None:
|
42 |
result = chardet.detect(upload_file.getvalue())
|