Spaces:
Runtime error
Runtime error
mattmdjaga
commited on
Commit
β’
9e9fb6f
1
Parent(s):
ae479b2
App init + req.txt
Browse files- app.py +166 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import base64
|
3 |
+
from typing import List, Tuple
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
from datasets import load_dataset
|
8 |
+
from transformers import AutoProcessor, AutoModel
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
dtype = torch.float16 if device == "cuda" else torch.float32
|
14 |
+
|
15 |
+
# Load example dataset
|
16 |
+
dataset = load_dataset("xzuyn/dalle-3_vs_sd-v1-5_dpo", num_proc=8)
|
17 |
+
|
18 |
+
processor_name = "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
|
19 |
+
model_name = "yuvalkirstain/PickScore_v1"
|
20 |
+
processor = AutoProcessor.from_pretrained(processor_name)
|
21 |
+
model = AutoModel.from_pretrained(model_name, torch_dtype=dtype).to(device)
|
22 |
+
|
23 |
+
|
24 |
+
def decode_image(image: str) -> Image:
|
25 |
+
"""
|
26 |
+
Decodes base64 string to PIL image.
|
27 |
+
Args:
|
28 |
+
image: base64 string
|
29 |
+
Returns:
|
30 |
+
PIL image
|
31 |
+
"""
|
32 |
+
img_byte_arr = base64.b64decode(image)
|
33 |
+
img_byte_arr = io.BytesIO(img_byte_arr)
|
34 |
+
img_byte_arr = Image.open(img_byte_arr)
|
35 |
+
return img_byte_arr
|
36 |
+
|
37 |
+
|
38 |
+
def get_preference(img_1: Image.Image, img_2: Image.Image, caption: str) -> Image.Image:
|
39 |
+
"""
|
40 |
+
Returns the preference of the caption for the two images.
|
41 |
+
Args:
|
42 |
+
img_1: PIL image
|
43 |
+
img_2: PIL image
|
44 |
+
caption: string
|
45 |
+
Returns:
|
46 |
+
preference image: PIL image
|
47 |
+
"""
|
48 |
+
imgs = [img_1, img_2]
|
49 |
+
logits = get_logits(caption, imgs)
|
50 |
+
preference = logits.argmax().item()
|
51 |
+
|
52 |
+
return imgs[preference]
|
53 |
+
|
54 |
+
|
55 |
+
def sample_example() -> Tuple[Image.Image, Image.Image, Image.Image, str]:
|
56 |
+
"""
|
57 |
+
Samples a random example from the dataset and displays it.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
img_1: PIL image
|
61 |
+
img_2: PIL image
|
62 |
+
preference: PIL image
|
63 |
+
caption: string
|
64 |
+
"""
|
65 |
+
example = dataset["train"][np.random.randint(0, len(dataset["train"]))]
|
66 |
+
img_1 = decode_image(example["jpg_0"])
|
67 |
+
img_2 = decode_image(example["jpg_1"])
|
68 |
+
caption = example["caption"]
|
69 |
+
imgs = [img_1, img_2]
|
70 |
+
logits = get_logits(caption, imgs)
|
71 |
+
preference = logits.argmax().item()
|
72 |
+
return (img_1, img_2, imgs[preference], caption)
|
73 |
+
|
74 |
+
|
75 |
+
def get_logits(caption: str, imgs: List[Image.Image]) -> torch.Tensor:
|
76 |
+
"""
|
77 |
+
Returns the logits for the caption and images.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
caption: string
|
81 |
+
imgs: list of PIL images
|
82 |
+
Returns:
|
83 |
+
logits: torch.Tensor
|
84 |
+
"""
|
85 |
+
|
86 |
+
inputs = processor(
|
87 |
+
text=caption,
|
88 |
+
images=imgs,
|
89 |
+
return_tensors="pt",
|
90 |
+
padding=True,
|
91 |
+
truncation=True,
|
92 |
+
max_length=77,
|
93 |
+
).to(device)
|
94 |
+
inputs["pixel_values"] = (
|
95 |
+
inputs["pixel_values"].half() if device == "cuda" else inputs["pixel_values"]
|
96 |
+
)
|
97 |
+
outputs = model(**inputs)
|
98 |
+
logits_per_image = outputs.logits_per_image
|
99 |
+
|
100 |
+
return logits_per_image
|
101 |
+
|
102 |
+
|
103 |
+
### Description
|
104 |
+
title = r"""
|
105 |
+
<h1 align="center">Aesthetic Scorer: CLIP fine-tuned for DPO scoring </h1>
|
106 |
+
"""
|
107 |
+
|
108 |
+
description = r"""
|
109 |
+
<b> This is a demo for the paper <a href="https://arxiv.org/abs/2109.04436">Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation </a> </b> <br>
|
110 |
+
|
111 |
+
How to use this demo: <br>
|
112 |
+
1. Upload two images generated using the same caption.
|
113 |
+
2. Enter the caption used to generate the images.
|
114 |
+
3. Click on the "Get Preference" button to get the image which scores higher on user preferences according to the model. <br>
|
115 |
+
<b> OR </b> <br>
|
116 |
+
1. Click on the "Random Example" button to get a random example from a <a href="https://huggingface.co/datasets/xzuyn/dalle-3_vs_sd-v1-5_dpo">Dalle 3 vs SD 1.5 DPO dataset. </a><br>
|
117 |
+
|
118 |
+
This demo demonstrates the use of this CLIP variant for DPO scoring. The scores can then be used for DPO fine-tuning with these <a href="https://github.com/huggingface/diffusers/tree/main/examples/research_projects/diffusion_dpo">scripts. </a><br>
|
119 |
+
|
120 |
+
Accuracy on the <a href="https://huggingface.co/datasets/xzuyn/dalle-3_vs_sd-v1-5_dpo">Dalle 3 vs SD 1.5 DPO dataset: </a><br>
|
121 |
+
<a href="https://huggingface.co/yuvalkirstain/PickScore_v1">PickScore_v1</a> - 97.3 <br>
|
122 |
+
<a href="https://huggingface.co/CIDAS/clipseg-rd64-refined">CLIPSeg</a> - 70.9 <br>
|
123 |
+
<a href="https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K">CLIP-ViT-H-14-laion2B-s32B-b79K</a> - 82.3 <br>
|
124 |
+
"""
|
125 |
+
|
126 |
+
citation = r"""
|
127 |
+
π **Citation**
|
128 |
+
```bibtex
|
129 |
+
@inproceedings{Kirstain2023PickaPicAO,
|
130 |
+
title={Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation},
|
131 |
+
author={Yuval Kirstain and Adam Polyak and Uriel Singer and Shahbuland Matiana and Joe Penna and Omer Levy},
|
132 |
+
year={2023}
|
133 |
+
}
|
134 |
+
```
|
135 |
+
"""
|
136 |
+
|
137 |
+
with gr.Blocks() as demo:
|
138 |
+
gr.Markdown(title)
|
139 |
+
gr.Markdown(description)
|
140 |
+
|
141 |
+
with gr.Row():
|
142 |
+
first_image = gr.Image(height=400, width=400, label="First Image")
|
143 |
+
second_image = gr.Image(height=400, width=400, label="Second Image")
|
144 |
+
|
145 |
+
caption_box = gr.Textbox(lines=1, label="Caption")
|
146 |
+
|
147 |
+
with gr.Row():
|
148 |
+
image_button = gr.Button("Get Preference")
|
149 |
+
random_example = gr.Button("Random Example")
|
150 |
+
|
151 |
+
image_output = gr.Image(height=500, width=500, label="Preference")
|
152 |
+
|
153 |
+
image_button.click(
|
154 |
+
get_preference,
|
155 |
+
inputs=[first_image, second_image, caption_box],
|
156 |
+
outputs=image_output,
|
157 |
+
)
|
158 |
+
|
159 |
+
random_example.click(
|
160 |
+
sample_example, outputs=[first_image, second_image, image_output, caption_box]
|
161 |
+
)
|
162 |
+
|
163 |
+
gr.Markdown(citation)
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|