mattoofahaddcube's picture
updating for initial or parameter
5858a75
raw
history blame
3.71 kB
import streamlit as st
from functions import Functions, StreamlitFunctions
import pandas as pd
StreamlitFunctions.initialize_session_values()
StreamlitFunctions.print_tax_brackets()
StreamlitFunctions.reset_tax_brackets()
StreamlitFunctions.print_salary_parameters()
StreamlitFunctions.reset_salary_parameters()
StreamlitFunctions.initial_salary_parameter()
StreamlitFunctions.reset_initial_salary_parameter()
StreamlitFunctions.check_initial_salary_parameter()
if st.button("Calculate", use_container_width=True) and st.session_state.valid_input:
if st.session_state.user_initial_desired_net > 0:
initial_desired_net = st.session_state.user_initial_desired_net
else:
initial_desired_net = Functions.calculated_initial_desired_net(
st.session_state.current_salary,
st.session_state.desired_increment_percentage,
st.session_state.daily_cost_of_travel,
st.session_state.physical_days_per_week,
)
result = Functions.calculate_additional_amount(
initial_desired_net, st.session_state.tax_brackets
)
st.header("Salary Calculation Results")
col1, col2 = st.columns(2)
with col1:
# custom_metric("Initial Desired Net Salary", result['initial_desired_net'])
StreamlitFunctions.custom_metric("Final Net Salary", result["final_net_salary"])
StreamlitFunctions.custom_metric("Tax", result["tax"])
with col2:
# custom_metric("Additional Amount Needed", result['additional_amount'])
StreamlitFunctions.custom_metric(
"Gross Salary Needed", result["gross_salary_needed"]
)
# Display how initial_desired_net was determined
st.markdown("---")
if st.session_state.user_initial_desired_net > 0:
st.success("✅ Initial Desired Net Salary was provided by the user.")
summary_df = pd.DataFrame(
{
"Parameter": [
"Final Net Salary",
"Tax",
"Gross Salary",
],
"Value": [
f"PKR {result['final_net_salary']:,.2f}",
f"PKR {result['tax']:,.2f}",
f"PKR {result['gross_salary_needed']:,.2f}",
],
}
)
else:
st.info(
"ℹ️ Initial Desired Net Salary was calculated based on the provided parameters."
)
summary_df = pd.DataFrame(
{
"Parameter": [
"Current Salary",
"Desired Increment",
"Daily Travel Cost",
"On-Site Days/Week",
"Gross Salary",
"Tax",
"Final Net Salary",
],
"Value": [
f"PKR {st.session_state.current_salary:,.2f}",
f"{st.session_state.desired_increment_percentage:.2%}",
f"PKR {st.session_state.daily_cost_of_travel:,.2f}",
f"{st.session_state.physical_days_per_week}",
f"PKR {result['gross_salary_needed']:,.2f}",
f"PKR {result['tax']:,.2f}",
f"PKR {result['final_net_salary']:,.2f}",
],
}
)
# Display a summary of the calculation
st.subheader("Calculation Summary")
st.table(summary_df)
st.subheader("Salary Breakdown")
breakdown_data = {
"Component": ["Net Salary", "Tax"],
"Amount": [result["final_net_salary"], result["tax"]],
}
breakdown_df = pd.DataFrame(breakdown_data)
st.bar_chart(breakdown_df.set_index("Component"))