File size: 10,939 Bytes
9bf16b8
9228783
 
 
 
 
 
 
 
 
 
 
 
 
9bf16b8
9228783
 
 
 
 
9bf16b8
9228783
 
 
 
 
 
 
 
 
 
 
 
9bf16b8
9228783
9bf16b8
9228783
 
 
9bf16b8
9228783
9bf16b8
 
9228783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf16b8
 
9228783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf16b8
9228783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf16b8
 
 
9228783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bf16b8
9228783
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import gradio as gr
import PIL.Image
import transformers
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import os
import string
import functools
import re
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
import spaces

model_id = "mattraj/curacel-transcription-1"
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device)
processor = PaliGemmaProcessor.from_pretrained(model_id)

def resize_and_pad(image, target_dim):
    # Calculate the aspect ratio
    scale_factor = 1
    aspect_ratio = image.width / image.height
    if aspect_ratio > 1:
        # Width is greater than height
        new_width = int(target_dim * scale_factor)
        new_height = int((target_dim / aspect_ratio) * scale_factor)
    else:
        # Height is greater than width
        new_height = int(target_dim * scale_factor)
        new_width = int(target_dim * aspect_ratio * scale_factor)

    resized_image = image.resize((new_width, new_height), Image.LANCZOS)

    # Create a new image with the target dimensions and a white background
    new_image = Image.new("RGB", (target_dim, target_dim), (255, 255, 255))
    new_image.paste(resized_image, ((target_dim - new_width) // 2, (target_dim - new_height) // 2))

    return new_image


###### Transformers Inference
@spaces.GPU
def infer(
        image: PIL.Image.Image,
        text: str,
        max_new_tokens: int
) -> str:
    inputs = processor(text=text, images=resize_and_pad(image), return_tensors="pt").to(device)
    with torch.inference_mode():
        generated_ids = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            do_sample=False
        )
    result = processor.batch_decode(generated_ids, skip_special_tokens=True)
    return result[0][len(text):].lstrip("\n")


##### Parse segmentation output tokens into masks
##### Also returns bounding boxes with their labels

def parse_segmentation(input_image, input_text):
    out = infer(input_image, input_text, max_new_tokens=100)
    objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
    labels = set(obj.get('name') for obj in objs if obj.get('name'))
    color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
    highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
    annotated_img = (
        input_image,
        [
            (
                obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
                obj['name'] or '',
            )
            for obj in objs
            if 'mask' in obj or 'xyxy' in obj
        ],
    )
    has_annotations = bool(annotated_img[1])
    return annotated_img


######## Demo

INTRO_TEXT = """## Curacel Handwritten Arabic demo\n\n
Finetuned from: google/paligemma-3b-pt-448


Translation model demo at: https://prod.arabic-gpt.ai/

Prompts:
Translate the Arabic to English: {model output}

The following is a diagnosis in Arabic from a medical billing form we need to translate to English. The transcriber is not necessariily accurate so one or more characters or words may be wrong. Given what is written, what is the most likely diagnosis. Think step by step, and think about similar words or mispellings in Arabic. Give multiple arabic diagnoses along with the translation in English for each, then finally select the diagnosis that makes the most sense given what was transcribed and print the English translation as your most likely final translation. Transcribed text:  {model output}
"""

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(INTRO_TEXT)
    with gr.Tab("Text Generation"):
        with gr.Column():
            image = gr.Image(type="pil")
            text_input = gr.Text(label="Input Text")

            text_output = gr.Text(label="Text Output")
            chat_btn = gr.Button()
            tokens = gr.Slider(
                label="Max New Tokens",
                info="Set to larger for longer generation.",
                minimum=10,
                maximum=100,
                value=20,
                step=10,
            )

        chat_inputs = [
            image,
            text_input,
            tokens
        ]
        chat_outputs = [
            text_output
        ]
        chat_btn.click(
            fn=infer,
            inputs=chat_inputs,
            outputs=chat_outputs,
        )

        examples = [["./diagnosis-1.jpg", "Transcribe the Arabic text."],
                    ["./examples/sign.jpg", "Transcribe the Arabic text."]]
        gr.Markdown("")

        gr.Examples(
            examples=examples,
            inputs=chat_inputs,
        )
'''        
    with gr.Tab("Segment/Detect"):
        image = gr.Image(type="pil")
        seg_input = gr.Text(label="Entities to Segment/Detect")
        seg_btn = gr.Button("Submit")
        annotated_image = gr.AnnotatedImage(label="Output")

        examples = [["./diagnosis-1.jpg", "Transcribe the Arabic text."],
                    ["./examples/sign.jpg", "Transcribe the Arabic text."]]
        gr.Markdown(
            "")
        gr.Examples(
            examples=examples,
            inputs=[image, seg_input],
        )

        seg_inputs = [
            image,
            seg_input
        ]
        seg_outputs = [
            annotated_image
        ]
        seg_btn.click(
            fn=parse_segmentation,
            inputs=seg_inputs,
            outputs=seg_outputs,
        )
'''

### Postprocessing Utils for Segmentation Tokens
### Segmentation tokens are passed to another VAE which decodes them to a mask

_MODEL_PATH = 'vae-oid.npz'

_SEGMENT_DETECT_RE = re.compile(
    r'(.*?)' +
    r'<loc(\d{4})>' * 4 + r'\s*' +
    '(?:%s)?' % (r'<seg(\d{3})>' * 16) +
    r'\s*([^;<>]+)? ?(?:; )?',
)


def _get_params(checkpoint):
    """Converts PyTorch checkpoint to Flax params."""

    def transp(kernel):
        return np.transpose(kernel, (2, 3, 1, 0))

    def conv(name):
        return {
            'bias': checkpoint[name + '.bias'],
            'kernel': transp(checkpoint[name + '.weight']),
        }

    def resblock(name):
        return {
            'Conv_0': conv(name + '.0'),
            'Conv_1': conv(name + '.2'),
            'Conv_2': conv(name + '.4'),
        }

    return {
        '_embeddings': checkpoint['_vq_vae._embedding'],
        'Conv_0': conv('decoder.0'),
        'ResBlock_0': resblock('decoder.2.net'),
        'ResBlock_1': resblock('decoder.3.net'),
        'ConvTranspose_0': conv('decoder.4'),
        'ConvTranspose_1': conv('decoder.6'),
        'ConvTranspose_2': conv('decoder.8'),
        'ConvTranspose_3': conv('decoder.10'),
        'Conv_1': conv('decoder.12'),
    }


def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
    batch_size, num_tokens = codebook_indices.shape
    assert num_tokens == 16, codebook_indices.shape
    unused_num_embeddings, embedding_dim = embeddings.shape

    encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
    encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
    return encodings


@functools.cache
def _get_reconstruct_masks():
    """Reconstructs masks from codebook indices.
    Returns:
      A function that expects indices shaped `[B, 16]` of dtype int32, each
      ranging from 0 to 127 (inclusive), and that returns a decoded masks sized
      `[B, 64, 64, 1]`, of dtype float32, in range [-1, 1].
    """

    class ResBlock(nn.Module):
        features: int

        @nn.compact
        def __call__(self, x):
            original_x = x
            x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
            x = nn.relu(x)
            x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
            x = nn.relu(x)
            x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
            return x + original_x

    class Decoder(nn.Module):
        """Upscales quantized vectors to mask."""

        @nn.compact
        def __call__(self, x):
            num_res_blocks = 2
            dim = 128
            num_upsample_layers = 4

            x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
            x = nn.relu(x)

            for _ in range(num_res_blocks):
                x = ResBlock(features=dim)(x)

            for _ in range(num_upsample_layers):
                x = nn.ConvTranspose(
                    features=dim,
                    kernel_size=(4, 4),
                    strides=(2, 2),
                    padding=2,
                    transpose_kernel=True,
                )(x)
                x = nn.relu(x)
                dim //= 2

            x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)

            return x

    def reconstruct_masks(codebook_indices):
        quantized = _quantized_values_from_codebook_indices(
            codebook_indices, params['_embeddings']
        )
        return Decoder().apply({'params': params}, quantized)

    with open(_MODEL_PATH, 'rb') as f:
        params = _get_params(dict(np.load(f)))

    return jax.jit(reconstruct_masks, backend='cpu')


def extract_objs(text, width, height, unique_labels=False):
    """Returns objs for a string with "<loc>" and "<seg>" tokens."""
    objs = []
    seen = set()
    while text:
        m = _SEGMENT_DETECT_RE.match(text)
        if not m:
            break
        print("m", m)
        gs = list(m.groups())
        before = gs.pop(0)
        name = gs.pop()
        y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]

        y1, x1, y2, x2 = map(round, (y1 * height, x1 * width, y2 * height, x2 * width))
        seg_indices = gs[4:20]
        if seg_indices[0] is None:
            mask = None
        else:
            seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
            m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0]
            m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
            m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
            mask = np.zeros([height, width])
            if y2 > y1 and x2 > x1:
                mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0

        content = m.group()
        if before:
            objs.append(dict(content=before))
            content = content[len(before):]
        while unique_labels and name in seen:
            name = (name or '') + "'"
        seen.add(name)
        objs.append(dict(
            content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
        text = text[len(before) + len(content):]

    if text:
        objs.append(dict(content=text))

    return objs


#########

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)