Commit
·
d2fc011
1
Parent(s):
d929d14
Update app.py
Browse files
app.py
CHANGED
@@ -9,6 +9,16 @@ import streamlit as st
|
|
9 |
from PIL import Image
|
10 |
import pandas as pd
|
11 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
model_type = st.sidebar.selectbox(
|
14 |
'Select Model', ('VGG16', 'VGG19', 'ResNet50V2', 'MobileNetV2'))
|
@@ -18,7 +28,7 @@ model_type2 = models[model_type]
|
|
18 |
|
19 |
top_n = st.sidebar.selectbox('Number of Results', (3, 5, 10))
|
20 |
results = st.sidebar.selectbox('Display Summary', ('No','Yes'))
|
21 |
-
|
22 |
|
23 |
exec(f'from keras.applications.{model_type2} import {model_type}')
|
24 |
exec(
|
@@ -31,7 +41,7 @@ try:
|
|
31 |
img = Image.open(img_path)
|
32 |
except:
|
33 |
img = Image.open('dog.jpg')
|
34 |
-
|
35 |
|
36 |
img = img.resize((224, 224)) # Resize to match VGG16 input size
|
37 |
x = np.array(img)
|
@@ -50,11 +60,77 @@ df = df[['Object', 'Percent Certainty']]
|
|
50 |
df['Percent Certainty'] = df['Percent Certainty'].apply(
|
51 |
lambda x: '{:.2%}'.format(x))
|
52 |
|
53 |
-
st.
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from PIL import Image
|
10 |
import pandas as pd
|
11 |
import numpy as np
|
12 |
+
from keras import layers
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
def get_img_array(img_path, target_size):
|
16 |
+
array = keras.utils.img_to_array(img)
|
17 |
+
array = np.expand_dims(array, axis=0)
|
18 |
+
return array
|
19 |
+
st.set_page_config(layout="wide")
|
20 |
+
|
21 |
+
|
22 |
|
23 |
model_type = st.sidebar.selectbox(
|
24 |
'Select Model', ('VGG16', 'VGG19', 'ResNet50V2', 'MobileNetV2'))
|
|
|
28 |
|
29 |
top_n = st.sidebar.selectbox('Number of Results', (3, 5, 10))
|
30 |
results = st.sidebar.selectbox('Display Summary', ('No','Yes'))
|
31 |
+
display = st.sidebar.selectbox('Display Filtered Images', ('No','Yes'))
|
32 |
|
33 |
exec(f'from keras.applications.{model_type2} import {model_type}')
|
34 |
exec(
|
|
|
41 |
img = Image.open(img_path)
|
42 |
except:
|
43 |
img = Image.open('dog.jpg')
|
44 |
+
|
45 |
|
46 |
img = img.resize((224, 224)) # Resize to match VGG16 input size
|
47 |
x = np.array(img)
|
|
|
60 |
df['Percent Certainty'] = df['Percent Certainty'].apply(
|
61 |
lambda x: '{:.2%}'.format(x))
|
62 |
|
63 |
+
# with st.container():
|
64 |
|
65 |
+
with st.container():
|
66 |
+
col1, col2 = st.columns((1,3))
|
67 |
+
with col1:
|
68 |
+
st.image(img,width=400)
|
69 |
+
with col2:
|
70 |
+
st.dataframe(df)
|
71 |
+
|
72 |
+
|
73 |
+
with st.container():
|
74 |
+
col1, col2 = st.columns((2, 4))
|
75 |
+
if results=='Yes':
|
76 |
+
with col1:
|
77 |
+
stringlist = []
|
78 |
+
model.summary(print_fn=lambda x: stringlist.append(x))
|
79 |
+
short_model_summary = "\n".join(stringlist)
|
80 |
+
print(short_model_summary)
|
81 |
+
st.write(short_model_summary)
|
82 |
+
|
83 |
+
|
84 |
+
if display =='Yes':
|
85 |
+
img_tensor = get_img_array(img, target_size=(224, 224))
|
86 |
+
layer_outputs = []
|
87 |
+
layer_names = []
|
88 |
+
for layer in model.layers:
|
89 |
+
if isinstance(layer, (layers.Conv2D, layers.MaxPooling2D)):
|
90 |
+
layer_outputs.append(layer.output)
|
91 |
+
layer_names.append(layer.name)
|
92 |
+
activation_model = keras.Model(inputs=model.input, outputs=layer_outputs)
|
93 |
+
|
94 |
+
activations = activation_model.predict(img_tensor)
|
95 |
+
|
96 |
+
first_layer_activation = activations[0]
|
97 |
+
|
98 |
+
plt.matshow(first_layer_activation[0, :, :, 5], cmap="viridis")
|
99 |
+
|
100 |
+
images_per_row = 16
|
101 |
+
all_pngs=[]
|
102 |
+
for layer_name, layer_activation in zip(layer_names, activations):
|
103 |
+
n_features = layer_activation.shape[-1]
|
104 |
+
size = layer_activation.shape[1]
|
105 |
+
n_cols = n_features // images_per_row
|
106 |
+
display_grid = np.zeros(((size + 1) * n_cols - 1,
|
107 |
+
images_per_row * (size + 1) - 1))
|
108 |
+
for col in range(n_cols):
|
109 |
+
for row in range(images_per_row):
|
110 |
+
channel_index = col * images_per_row + row
|
111 |
+
channel_image = layer_activation[0, :, :, channel_index].copy()
|
112 |
+
if channel_image.sum() != 0:
|
113 |
+
channel_image -= channel_image.mean()
|
114 |
+
channel_image /= channel_image.std()
|
115 |
+
channel_image *= 64
|
116 |
+
channel_image += 128
|
117 |
+
channel_image = np.clip(channel_image, 0, 255).astype("uint8")
|
118 |
+
display_grid[
|
119 |
+
col * (size + 1): (col + 1) * size + col,
|
120 |
+
row * (size + 1) : (row + 1) * size + row] = channel_image
|
121 |
+
scale = 1. / size
|
122 |
+
plt.figure(figsize=(scale * display_grid.shape[1],
|
123 |
+
scale * display_grid.shape[0]))
|
124 |
+
plt.title(layer_name)
|
125 |
+
plt.grid(False)
|
126 |
+
plt.axis("off")
|
127 |
+
plt.imshow(display_grid, aspect="auto", cmap="viridis")
|
128 |
+
|
129 |
+
filename=f'{layer_name}.png'
|
130 |
+
plt.savefig(f'{layer_name}.png')
|
131 |
+
all_pngs.append(filename)
|
132 |
+
with col2:
|
133 |
+
for i in all_pngs: st.image(i)
|
134 |
+
|
135 |
+
|
136 |
+
|