upload 2 files
Browse files- app.py +33 -0
- requiremets.txt +5 -0
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.linear_model import LinearRegression
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# サンプルデータの作成
|
7 |
+
np.random.seed(0)
|
8 |
+
dates = pd.date_range('20230101', periods=100)
|
9 |
+
sales = np.random.randint(100, 200, size=(100,))
|
10 |
+
data = pd.DataFrame({'date': dates, 'sales': sales})
|
11 |
+
|
12 |
+
# モデルの訓練
|
13 |
+
model = LinearRegression()
|
14 |
+
data['date_ordinal'] = pd.to_datetime(data['date']).map(pd.Timestamp.toordinal)
|
15 |
+
X = data['date_ordinal'].values.reshape(-1, 1)
|
16 |
+
y = data['sales'].values
|
17 |
+
model.fit(X, y)
|
18 |
+
|
19 |
+
def predict_sales(future_date):
|
20 |
+
future_date_ordinal = pd.to_datetime(future_date).toordinal()
|
21 |
+
prediction = model.predict(np.array([[future_date_ordinal]]))
|
22 |
+
return prediction[0]
|
23 |
+
|
24 |
+
# Gradioインターフェースの定義
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=predict_sales,
|
27 |
+
inputs=gr.inputs.Textbox(label="Enter future date (YYYY-MM-DD)"),
|
28 |
+
outputs=gr.outputs.Textbox(label="Predicted sales")
|
29 |
+
)
|
30 |
+
|
31 |
+
if __name__ == "__main__":
|
32 |
+
iface.launch()
|
33 |
+
|
requiremets.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pandas
|
3 |
+
scikit-learn
|
4 |
+
numpy
|
5 |
+
|