import torchvision.transforms as transforms import random import gradio as gr import PIL from fastai.vision.all import * from huggingface_hub import from_pretrained_fastai from fastai.basics import * from fastai.vision import models from fastai.vision.all import * from fastai.metrics import * from fastai.data.all import * from fastai.callback import * from pathlib import Path try: import albumentations except ImportError: os.system('pip install albumentations') import albumentations try: import toml except ImportError: os.system('pip install toml') import toml os.system('pip install -U gradio') import gradio as gr device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def get_y_fn (x): return Path(str(x).replace("Images","Labels").replace("color","gt").replace(".jpg",".png")) def transform_image(image): my_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize( [0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) image_aux = image return my_transforms(image_aux).unsqueeze(0).to(device) class TargetMaskConvertTransform(ItemTransform): def __init__(self): pass def encodes(self, x): img,mask = x #Convert to array mask = np.array(mask) mask[mask==255]=1 mask[mask==150]=2 mask[mask==76]=3 mask[mask==74]=3 mask[mask==29]=4 mask[mask==25]=4 mask[(mask != 1) & (mask != 2) & (mask != 3) & (mask != 4)] = 0 # Back to PILMask mask = PILMask.create(mask) return img, mask from albumentations import ( Compose, OneOf, ElasticTransform, GridDistortion, OpticalDistortion, HorizontalFlip, Rotate, Transpose, CLAHE, ShiftScaleRotate ) class SegmentationAlbumentationsTransform(ItemTransform): split_idx = 0 def __init__(self, aug): self.aug = aug def encodes(self, x): img,mask = x aug = self.aug(image=np.array(img), mask=np.array(mask)) return PILImage.create(aug["image"]), PILMask.create(aug["mask"]) repo_id = "maviced/practica3" learn = from_pretrained_fastai(repo_id) model = learn.model model = model.cpu() def predict(img): img = PILImage.create(img) image = transforms.Resize((480,640))(img) tensor = transform_image(image=image) model.to(device) with torch.no_grad(): outputs = model(tensor) outputs = torch.argmax(outputs,1) mask = np.array(outputs.cpu()) mask[mask==0]=255 mask[mask==1]=150 mask[mask==2]=76 mask[mask==3]=25 mask[mask==4]=0 mask=np.reshape(mask,(480,640)) return Image.fromarray(mask.astype('uint8')) # Creamos la interfaz y la lanzamos. gr.Interface(fn=predict, inputs=["image"], outputs=["image"], examples=['color_154.jpg','color_155.jpg']).launch(share=True)