mawady's picture
Update app.py
37da64e
raw
history blame
4.05 kB
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2 as keras_model
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, decode_predictions
import matplotlib.pyplot as plt
from alibi.explainers import IntegratedGradients
from alibi.datasets import load_cats
from alibi.utils.visualization import visualize_image_attr
import numpy as np
from PIL import Image, ImageFilter
import io
import time
import os
import copy
import pickle
import datetime
import urllib.request
import gradio as gr
url = "https://upload.wikimedia.org/wikipedia/commons/3/38/Adorable-animal-cat-20787.jpg"
path_input = "./cat.jpg"
urllib.request.urlretrieve(url, filename=path_input)
url = "https://upload.wikimedia.org/wikipedia/commons/4/43/Cute_dog.jpg"
path_input = "./dog.jpg"
urllib.request.urlretrieve(url, filename=path_input)
model = keras_model(weights='imagenet')
n_steps = 50
method = "gausslegendre"
internal_batch_size = 50
ig = IntegratedGradients(model,
n_steps=n_steps,
method=method,
internal_batch_size=internal_batch_size)
def do_process(img, baseline):
instance = image.img_to_array(img)
instance = np.expand_dims(instance, axis=0)
instance = preprocess_input(instance)
preds = model.predict(instance)
lstPreds = decode_predictions(preds, top=3)[0]
dctPreds = {lstPreds[i][1]: round(float(lstPreds[i][2]),2) for i in range(len(lstPreds))}
predictions = preds.argmax(axis=1)
if baseline == 'white':
baselines = bls = np.ones(instance.shape).astype(instance.dtype)
img_flt = Image.fromarray(np.uint8(np.squeeze(baselines)*255))
elif baseline == 'black':
baselines = bls = np.zeros(instance.shape).astype(instance.dtype)
img_flt = Image.fromarray(np.uint8(np.squeeze(baselines)*255))
elif baseline == 'blur':
img_flt = img.filter(ImageFilter.GaussianBlur(5))
baselines = image.img_to_array(img_flt)
baselines = np.expand_dims(baselines, axis=0)
baselines = preprocess_input(baselines)
else:
baselines = np.random.random_sample(instance.shape).astype(instance.dtype)
img_flt = Image.fromarray(np.uint8(np.squeeze(baselines)*255))
explanation = ig.explain(instance,
baselines=baselines,
target=predictions)
attrs = explanation.attributions[0]
fig, ax = visualize_image_attr(attr=attrs.squeeze(), original_image=img, method='blended_heat_map',
sign='all', show_colorbar=True, title=baseline,
plt_fig_axis=None, use_pyplot=False)
fig.tight_layout()
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img_res = Image.open(buf)
return img_res, img_flt, dctPreds
input_im = gr.inputs.Image(shape=(224, 224), image_mode='RGB',
invert_colors=False, source="upload",
type="pil")
input_drop = gr.inputs.Dropdown(label='Baseline (default: random)',
choices=['random', 'black', 'white', 'blur'], default='random', type='value')
output_img = gr.outputs.Image(label='Output of Integrated Gradients', type='pil')
output_base = gr.outputs.Image(label='Baseline image', type='pil')
output_label = gr.outputs.Label(label='Classification results', num_top_classes=3)
title = "XAI - Integrated gradients"
description = "Playground: Integrated gradients for a ResNet model trained on Imagenet dataset. Tools: Alibi, TF, Gradio."
examples = [['./cat.jpg', 'blur'],['./dog.jpg', 'random']]
article="<p style='text-align: center'><a href='https://github.com/mawady/colab-recipes-cv' target='_blank'>Colab recipes for computer vision - Dr. Mohamed Elawady</a></p>"
iface = gr.Interface(
fn=do_process,
inputs=[input_im, input_drop],
outputs=[output_img,output_base,output_label],
live=False,
interpretation=None,
title=title,
description=description,
article=article,
examples=examples
)
iface.launch(share=True)