Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras.applications.resnet_v2 import ResNet50V2
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
from tensorflow.keras.applications.resnet_v2 import preprocess_input, decode_predictions
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from alibi.explainers import IntegratedGradients
|
7 |
+
from alibi.datasets import load_cats
|
8 |
+
from alibi.utils.visualization import visualize_image_attr
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
+
import io
|
12 |
+
import time
|
13 |
+
import os
|
14 |
+
import copy
|
15 |
+
import pickle
|
16 |
+
import datetime
|
17 |
+
import urllib.request
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
|
21 |
+
url = "https://upload.wikimedia.org/wikipedia/commons/3/38/Adorable-animal-cat-20787.jpg"
|
22 |
+
path_input = "/content/cat.jpg"
|
23 |
+
urllib.request.urlretrieve(url, filename=path_input)
|
24 |
+
|
25 |
+
url = "https://upload.wikimedia.org/wikipedia/commons/4/43/Cute_dog.jpg"
|
26 |
+
path_input = "/content/dog.jpg"
|
27 |
+
urllib.request.urlretrieve(url, filename=path_input)
|
28 |
+
|
29 |
+
model = ResNet50V2(weights='imagenet')
|
30 |
+
|
31 |
+
n_steps = 50
|
32 |
+
method = "gausslegendre"
|
33 |
+
internal_batch_size = 50
|
34 |
+
ig = IntegratedGradients(model,
|
35 |
+
n_steps=n_steps,
|
36 |
+
method=method,
|
37 |
+
internal_batch_size=internal_batch_size)
|
38 |
+
|
39 |
+
# refs:
|
40 |
+
# - fig2pil: https://stackoverflow.com/questions/57316491/how-to-convert-matplotlib-figure-to-pil-image-object-without-saving-image
|
41 |
+
def do_process(img, baseline):
|
42 |
+
instance = image.img_to_array(img)
|
43 |
+
instance = np.expand_dims(instance, axis=0)
|
44 |
+
instance = preprocess_input(instance)
|
45 |
+
preds = model.predict(instance)
|
46 |
+
lstPreds = decode_predictions(preds, top=3)[0]
|
47 |
+
dctPreds = {lstPreds[i][1]: round(float(lstPreds[i][2]),2) for i in range(len(lstPreds))}
|
48 |
+
predictions = preds.argmax(axis=1)
|
49 |
+
if baseline is 'white':
|
50 |
+
baselines = bls = np.ones(instance.shape).astype(instance.dtype)
|
51 |
+
elif baseline is 'black':
|
52 |
+
baselines = bls = np.zeros(instance.shape).astype(instance.dtype)
|
53 |
+
else:
|
54 |
+
baselines = np.random.random_sample(instance.shape).astype(instance.dtype)
|
55 |
+
explanation = ig.explain(instance,
|
56 |
+
baselines=baselines,
|
57 |
+
target=predictions)
|
58 |
+
attrs = explanation.attributions[0]
|
59 |
+
fig, ax = visualize_image_attr(attr=attrs.squeeze(), original_image=img, method='blended_heat_map',
|
60 |
+
sign='all', show_colorbar=True, title='Overlaid Attributions',
|
61 |
+
plt_fig_axis=None, use_pyplot=False)
|
62 |
+
buf = io.BytesIO()
|
63 |
+
fig.savefig(buf)
|
64 |
+
buf.seek(0)
|
65 |
+
img_res = Image.open(buf)
|
66 |
+
return img_res, dctPreds
|
67 |
+
|
68 |
+
input_im = gr.inputs.Image(shape=(224, 224), image_mode='RGB',
|
69 |
+
invert_colors=False, source="upload",
|
70 |
+
type="pil")
|
71 |
+
input_drop = gr.inputs.Dropdown(label='Baseline (default: random)',
|
72 |
+
choices=sorted(list(['black', 'white', 'random'])), default='random', type='value')
|
73 |
+
|
74 |
+
output_img = gr.outputs.Image(label='Output image', type='pil')
|
75 |
+
output_label = gr.outputs.Label(num_top_classes=3)
|
76 |
+
|
77 |
+
title = "XAI - Integrated gradients"
|
78 |
+
description = "Playground: Integrated gradients for a ResNet model trained on Imagenet dataset. Tools: Alibi, TF, Gradio."
|
79 |
+
examples = [['./cat.jpg'],['./dog.jpg']]
|
80 |
+
article="<p style='text-align: center'><a href='https://github.com/mawady/colab-recipes-cv' target='_blank'>Colab recipes for computer vision - Dr. Mohamed Elawady</a></p>"
|
81 |
+
iface = gr.Interface(
|
82 |
+
fn=do_process,
|
83 |
+
inputs=[input_im, input_drop],
|
84 |
+
outputs=[output_img,output_label],
|
85 |
+
live=False,
|
86 |
+
interpretation=None,
|
87 |
+
title=title,
|
88 |
+
description=description,
|
89 |
+
article=article,
|
90 |
+
examples=examples
|
91 |
+
)
|
92 |
+
|
93 |
+
iface.test_launch()
|
94 |
+
|
95 |
+
iface.launch(share=True, debug=True)
|
96 |
+
|