Spaces:
Sleeping
Sleeping
import warnings | |
warnings.filterwarnings("ignore") | |
import torch | |
import cv2 | |
import numpy as np | |
from torchvision import transforms | |
from torchvision.models import resnet18, ResNet18_Weights | |
import urllib.request | |
from pytorch_grad_cam import GradCAMPlusPlus | |
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image | |
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget | |
import gradio as gr | |
IMG_SIZE = 224 | |
CLASSES = ResNet18_Weights.IMAGENET1K_V1.meta["categories"] | |
TOP_NUM_CLASSES = 3 | |
url = ( | |
"https://upload.wikimedia.org/wikipedia/commons/3/38/Adorable-animal-cat-20787.jpg" | |
) | |
path_input = "./cat.jpg" | |
urllib.request.urlretrieve(url, filename=path_input) | |
url = "https://upload.wikimedia.org/wikipedia/commons/4/43/Cute_dog.jpg" | |
path_input = "./dog.jpg" | |
urllib.request.urlretrieve(url, filename=path_input) | |
device = "cpu" | |
if torch.cuda.is_available(): | |
device = "cuda" | |
model = resnet18(pretrained=True) | |
data_transforms = transforms.Compose( | |
[ | |
transforms.Resize(IMG_SIZE), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def grad_campp(img, cls_ids): | |
img_rz = cv2.resize(np.array(img), (IMG_SIZE, IMG_SIZE)) | |
img = np.float32(img_rz) / 255 | |
input_tensor = preprocess_image(img, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]).to( | |
device | |
) | |
# mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5] | |
# Set target layers | |
target_layers = [model.layer4[-1]] | |
# Set target classes | |
# targets = [ClassifierOutputTarget(cls_id) for cls_id in cls_ids] | |
# GradCAM++ | |
gradcampp = GradCAMPlusPlus(model=model, target_layers=target_layers) | |
lst_gradcam = [] | |
for i in range(TOP_NUM_CLASSES): | |
targets = [ClassifierOutputTarget(cls_ids[i])] | |
grayscale_gradcampp = gradcampp( | |
input_tensor=input_tensor, | |
targets=targets, | |
eigen_smooth=False, | |
aug_smooth=False, | |
) | |
grayscale_gradcampp = grayscale_gradcampp[0, :] | |
gradcampp_image = show_cam_on_image(img, grayscale_gradcampp, use_rgb=True) | |
lst_gradcam.append(gradcampp_image) | |
return img_rz, lst_gradcam | |
def do_inference(img): | |
img_t = data_transforms(img) | |
batch_t = torch.unsqueeze(img_t, 0) | |
model.eval() | |
# We don't need gradients for test, so wrap in | |
# no_grad to save memory | |
with torch.no_grad(): | |
batch_t = batch_t.to(device) | |
# forward propagation | |
output = model(batch_t) | |
# get prediction | |
probs = torch.nn.functional.softmax(output, dim=1) | |
cls_ids = ( | |
torch.argsort(probs, dim=1, descending=True).cpu().numpy()[0].astype(int) | |
)[:TOP_NUM_CLASSES] | |
probs = probs.cpu().numpy()[0] | |
probs = probs[cls_ids] | |
labels = np.array(CLASSES)[cls_ids] | |
img_rz, lst_gradcam = grad_campp(img, cls_ids) | |
return ( | |
{labels[i]: round(float(probs[i]), 2) for i in range(len(labels))}, | |
img_rz, | |
lst_gradcam[0], | |
lst_gradcam[1], | |
lst_gradcam[2], | |
) | |
im = gr.inputs.Image( | |
shape=None, image_mode="RGB", invert_colors=False, source="upload", type="pil" | |
) | |
title = "Explainable AI - PyTorch" | |
description = "Playground: GradCam Inferernce of Object Classification using ResNet18 model. Libraries: PyTorch, Gradio, Grad-Cam" | |
examples = [["./cat.jpg"], ["./dog.jpg"]] | |
article = "<p style='text-align: center'><a href='https://github.com/mawady' target='_blank'>By Dr. Mohamed Elawady</a></p>" | |
iface = gr.Interface( | |
do_inference, | |
im, | |
outputs=[ | |
gr.outputs.Label(num_top_classes=TOP_NUM_CLASSES), | |
gr.outputs.Image(label="Output image", type="pil"), | |
gr.outputs.Image(label="Output image", type="pil"), | |
gr.outputs.Image(label="Output image", type="pil"), | |
gr.outputs.Image(label="Output image", type="pil"), | |
], | |
live=False, | |
interpretation=None, | |
title=title, | |
description=description, | |
examples=examples, | |
) | |
# iface.test_launch() | |
iface.launch() | |