NOOTestspace / app.py
mawairon's picture
Update app.py
ad5e55a verified
raw
history blame
5.73 kB
import gradio as gr
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
import torch
import torch.nn as nn
import pandas as pd
import matplotlib.pyplot as plt
import io
import base64
import os
import huggingface_hub
from huggingface_hub import hf_hub_download, login
# Load label mapping
label_to_int = pd.read_pickle('label_to_int.pkl')
int_to_label = {v: k for k, v in label_to_int.items()}
# Update labels based on the given conditions
for k, v in int_to_label.items():
if "KOREA" in v:
int_to_label[k] = "KOREA"
elif "KINGDOM" in v:
int_to_label[k] = "UK"
elif "RUSSIAN" in v:
int_to_label[k] = "RUSSIA"
class LogisticRegressionTorch(nn.Module):
def __init__(self, input_dim: int, output_dim: int):
super(LogisticRegressionTorch, self).__init__()
self.batch_norm = nn.BatchNorm1d(num_features=input_dim)
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
x = self.batch_norm(x)
out = self.linear(x)
return out
class BertClassifier(nn.Module):
def __init__(self, bert_model: AutoModel, classifier: LogisticRegressionTorch, num_labels: int):
super(BertClassifier, self).__init__()
self.bert = bert_model
self.classifier = classifier
self.num_labels = num_labels
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor = None):
outputs = self.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
pooled_output = outputs.hidden_states[-1][:, 0, :]
logits = self.classifier(pooled_output)
return logits
def load_model():
metadata_features = 0
N_UNIQUE_CLASSES = 38
base_model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bert-base-lastln-t2t', trust_remote_code=True, output_hidden_states=True)
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bert-base-lastln-t2t', trust_remote_code=True)
input_size = 768 + metadata_features
log_reg = LogisticRegressionTorch(input_dim=input_size, output_dim=N_UNIQUE_CLASSES)
token = os.getenv('HUGGINGFACE_TOKEN')
if token is None:
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
login(token=token)
file_path = hf_hub_download(
repo_id="mawairon/noo_test",
filename="gena-blastln-bs33-lr4e-05-S168.pth",
use_auth_token=token
)
weights = torch.load(file_path, map_location=torch.device('cpu'))
base_model.load_state_dict(weights['model_state_dict'])
log_reg.load_state_dict(weights['log_reg_state_dict'])
model = BertClassifier(base_model, log_reg, num_labels=N_UNIQUE_CLASSES)
model.eval()
return model, tokenizer
model, tokenizer = load_model()
def analyze_dna(username, password, sequence):
valid_usernames = os.getenv('USERNAME').split(',')
env_password = os.getenv('PASSWORD')
if username not in valid_usernames or password != env_password:
return {"error": "Invalid username or password"}, ""
try:
# Remove all whitespace characters
sequence = sequence.replace(" ", "").replace("\n", "").replace("\t", "").replace("\r", "")
if not all(nucleotide in 'ACTGN' for nucleotide in sequence):
return {"error": "Sequence contains invalid characters"}, ""
if len(sequence) < 300:
return {"error": "Sequence needs to be at least 300 nucleotides long"}, ""
def get_logits(seq):
inputs = tokenizer(seq, truncation=True, padding='max_length', max_length=512, return_tensors="pt", return_token_type_ids=False)
with torch.no_grad():
logits = model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
return logits
if len(sequence) > 3000:
num_shifts = len(sequence) // 1000
logits_sum = None
for i in range(num_shifts):
shifted_sequence = sequence[i*1000:] + sequence[:i*1000]
logits = get_logits(shifted_sequence)
if logits_sum is None:
logits_sum = logits
else:
logits_sum += logits
logits_avg = logits_sum / num_shifts
else:
logits_avg = get_logits(sequence)
probabilities = torch.nn.functional.softmax(logits_avg, dim=-1).squeeze().tolist()
top_5_indices = sorted(range(len(probabilities)), key=lambda i: probabilities[i], reverse=True)[:5]
top_5_probs = [probabilities[i] for i in top_5_indices]
top_5_labels = [int_to_label[i] for i in top_5_indices]
result = [(label, prob) for label, prob in zip(top_5_labels, top_5_probs)]
fig, ax = plt.subplots(figsize=(10, 6))
ax.barh(top_5_labels, top_5_probs, color='skyblue')
ax.set_xlabel('Probability')
ax.set_title('Assuming this sequence was genetically engineered,\n the 5 most likely countries in which it was engineered are:')
plt.gca().invert_yaxis()
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image_base64 = base64.b64encode(buf.read()).decode('utf-8')
buf.close()
return result, f'<img src="data:image/png;base64,{image_base64}" />'
except Exception as e:
return {"error": str(e)}, ""
# Create a Gradio interface
demo = gr.Interface(
fn=analyze_dna,
inputs=[
gr.Textbox(label="Username"),
gr.Textbox(label="Password", type="password"),
gr.Textbox(label="DNA Sequence")
],
outputs=["json", "html"]
)
# Launch the interface
demo.launch()