NOOTestspace / app.py
mawairon's picture
Update app.py
83fe210 verified
raw
history blame
4.2 kB
import gradio as gr
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
import torch
import torch.nn as nn
class LogisticRegressionTorch(nn.Module):
def __init__(self,
input_dim: int,
output_dim: int):
super(LogisticRegressionTorch, self).__init__()
self.batch_norm = nn.BatchNorm1d(num_features=input_dim)
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
x = self.batch_norm(x)
out = self.linear(x)
return out
class BertClassifier(nn.Module):
def __init__(self,
bert_model: AutoModel,
classifier: LogisticRegressionTorch,
num_labels: int):
super(BertClassifier, self).__init__()
self.bert = bert_model # Assume bert_model is an instance of a pre-trained BertModel
self.classifier = classifier
self.num_labels = num_labels
def forward(self, input_ids: torch.Tensor, attention_mask: torch.Tensor = None,
token_type_ids: torch.Tensor = None, labels: torch.Tensor = None):
# Extract outputs from the BERT model
outputs = self.bert(input_ids, attention_mask=attention_mask, output_hidden_states=True)
# Take the hidden states from the last layer and extract the hidden state of the first token for each element in the batch
pooled_output = outputs.hidden_states[-1][:, 0, :]
assert pooled_output.shape == (input_ids.shape[0], 768), f"Expected shape ({input_ids.shape[0]}, 768), but got {pooled_output.shape}"
# to-do later!
# Pass the pooled output to the classifier to get the logits
logits = self.classifier(pooled_output)
# Compute loss if labels are provided (assuming using CrossEntropyLoss for classification)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
pred = logits.view(-1, self.num_labels)
observed = labels.view(-1)
loss = loss_fct(pred, observed)
# Return the loss and logits
return loss, logits
# Load the Hugging Face model and tokenizer
metadata_features = 0
N_UNIQUE_CLASSES = 38 ## or 38
base_model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bert-base-lastln-t2t', trust_remote_code=True, output_hidden_states=True)
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bert-base-lastln-t2t', trust_remote_code=True)
# Initialize the classifier
input_size = 768 + metadata_features # featurizer output size + metadata size
log_reg = LogisticRegressionTorch(input_dim=input_size, output_dim=N_UNIQUE_CLASSES)
# Load Weights
model_weights_path = 'gena-blastln-bs33-lr4e-05-S168.pth'
weights = torch.load(model_weights_path, map_location=torch.device('cpu'))
base_model.load_state_dict(weights['model_state_dict'])
log_reg.load_state_dict(weights['log_reg_state_dict'])
# Creating Model
model = BertClassifier(base_model, log_reg, num_labels=N_UNIQUE_CLASSES)
model.eval()
# Define a function to process the DNA sequence
def analyze_dna(sequence):
# Preprocess the input sequence
inputs = tokenizer(sequence, truncation=True, padding='max_length', max_length=512, return_tensors="pt", return_token_type_ids=False)
print("tokenization done.")
# Get model predictions
_, logits = model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
print("Forward pass done.")
# Convert logits to probabilities
probabilities = torch.nn.functional.softmax(logits, dim=-1).squeeze().tolist()
print("Probabilities, done.")
# Get the top 5 most likely classes
top_5_indices = sorted(range(len(probabilities)), key=lambda i: probabilities[i], reverse=True)[:5]
top_5_probs = [probabilities[i] for i in top_5_indices]
# Prepare the output as a list of tuples (class_index, probability)
result = [(index, prob) for index, prob in zip(top_5_indices, top_5_probs)]
return result
# Create a Gradio interface
demo = gr.Interface(fn=analyze_dna, inputs="text", outputs="json")
# Launch the interface
demo.launch()