Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,9 @@ import transformers
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
|
4 |
import torch
|
5 |
import torch.nn as nn
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
class LogisticRegressionTorch(nn.Module):
|
@@ -110,9 +113,15 @@ def analyze_dna(sequence):
|
|
110 |
top_5_labels = [int_to_label[i] for i in top_5_indices]
|
111 |
|
112 |
# Prepare the output as a list of tuples (label_name, probability)
|
113 |
-
result = [(label, prob) for label, prob in zip(top_5_labels, top_5_probs)]
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
# Create a Gradio interface
|
118 |
demo = gr.Interface(fn=analyze_dna, inputs="text", outputs="json")
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModel
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
|
10 |
|
11 |
class LogisticRegressionTorch(nn.Module):
|
|
|
113 |
top_5_labels = [int_to_label[i] for i in top_5_indices]
|
114 |
|
115 |
# Prepare the output as a list of tuples (label_name, probability)
|
116 |
+
#result = [(label, prob) for label, prob in zip(top_5_labels, top_5_probs)]
|
117 |
+
# Plot histogram
|
118 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
119 |
+
ax.barh(top_5_labels, top_5_probs, color='skyblue')
|
120 |
+
ax.set_xlabel('Probability')
|
121 |
+
ax.set_title('Top 5 Most Likely Labels')
|
122 |
+
plt.gca().invert_yaxis() # Highest probabilities at the top
|
123 |
+
|
124 |
+
#return result
|
125 |
|
126 |
# Create a Gradio interface
|
127 |
demo = gr.Interface(fn=analyze_dna, inputs="text", outputs="json")
|