import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification # Load the Hugging Face model and tokenizer model_name = 'AIRI-Institute/gena-lm-bert-base-lastln-t2t' # Replace with the actual model name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Define a function to process the DNA sequence def analyze_dna(sequence): # Preprocess the input sequence inputs = tokenizer(sequence, return_tensors='pt') # Get model predictions outputs = model(**inputs) predictions = outputs.logits.argmax(dim=-1).item() return f"Prediction: {predictions}" # Create a Gradio interface demo = gr.Interface(fn=analyze_dna, inputs="text", outputs="text") # Launch the interface demo.launch()