|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import math |
|
from dataclasses import dataclass |
|
from typing import Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel |
|
from diffusers.models.embeddings import get_3d_rotary_pos_embed |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler |
|
from diffusers.utils import BaseOutput, logging, replace_example_docstring |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.video_processor import VideoProcessor |
|
from diffusers.image_processor import VaeImageProcessor |
|
from einops import rearrange |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```python |
|
>>> import torch |
|
>>> from diffusers import CogVideoX_Fun_Pipeline |
|
>>> from diffusers.utils import export_to_video |
|
|
|
>>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b" |
|
>>> pipe = CogVideoX_Fun_Pipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=torch.float16).to("cuda") |
|
>>> prompt = ( |
|
... "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. " |
|
... "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other " |
|
... "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, " |
|
... "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. " |
|
... "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical " |
|
... "atmosphere of this unique musical performance." |
|
... ) |
|
>>> video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0] |
|
>>> export_to_video(video, "output.mp4", fps=8) |
|
``` |
|
""" |
|
|
|
|
|
|
|
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): |
|
tw = tgt_width |
|
th = tgt_height |
|
h, w = src |
|
r = h / w |
|
if r > (th / tw): |
|
resize_height = th |
|
resize_width = int(round(th / h * w)) |
|
else: |
|
resize_width = tw |
|
resize_height = int(round(tw / w * h)) |
|
|
|
crop_top = int(round((th - resize_height) / 2.0)) |
|
crop_left = int(round((tw - resize_width) / 2.0)) |
|
|
|
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
def resize_mask(mask, latent, process_first_frame_only=True): |
|
latent_size = latent.size() |
|
batch_size, channels, num_frames, height, width = mask.shape |
|
|
|
if process_first_frame_only: |
|
target_size = list(latent_size[2:]) |
|
target_size[0] = 1 |
|
first_frame_resized = F.interpolate( |
|
mask[:, :, 0:1, :, :], |
|
size=target_size, |
|
mode='trilinear', |
|
align_corners=False |
|
) |
|
|
|
target_size = list(latent_size[2:]) |
|
target_size[0] = target_size[0] - 1 |
|
if target_size[0] != 0: |
|
remaining_frames_resized = F.interpolate( |
|
mask[:, :, 1:, :, :], |
|
size=target_size, |
|
mode='trilinear', |
|
align_corners=False |
|
) |
|
resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2) |
|
else: |
|
resized_mask = first_frame_resized |
|
else: |
|
target_size = list(latent_size[2:]) |
|
resized_mask = F.interpolate( |
|
mask, |
|
size=target_size, |
|
mode='trilinear', |
|
align_corners=False |
|
) |
|
return resized_mask |
|
|
|
|
|
def add_noise_to_reference_video(image, ratio=None): |
|
if ratio is None: |
|
sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device) |
|
sigma = torch.exp(sigma).to(image.dtype) |
|
else: |
|
sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio |
|
|
|
image_noise = torch.randn_like(image) * sigma[:, None, None, None, None] |
|
image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise) |
|
image = image + image_noise |
|
return image |
|
|
|
|
|
@dataclass |
|
class CogVideoX_Fun_PipelineOutput(BaseOutput): |
|
r""" |
|
Output class for CogVideo pipelines. |
|
|
|
Args: |
|
video (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): |
|
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing |
|
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape |
|
`(batch_size, num_frames, channels, height, width)`. |
|
""" |
|
|
|
videos: torch.Tensor |
|
|
|
|
|
class CogVideoX_Fun_Pipeline_Inpaint(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-video generation using CogVideoX. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. |
|
text_encoder ([`T5EncoderModel`]): |
|
Frozen text-encoder. CogVideoX_Fun uses |
|
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the |
|
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. |
|
tokenizer (`T5Tokenizer`): |
|
Tokenizer of class |
|
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). |
|
transformer ([`CogVideoXTransformer3DModel`]): |
|
A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded video latents. |
|
""" |
|
|
|
_optional_components = [] |
|
model_cpu_offload_seq = "text_encoder->vae->transformer->vae" |
|
|
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
] |
|
|
|
def __init__( |
|
self, |
|
tokenizer: T5Tokenizer, |
|
text_encoder: T5EncoderModel, |
|
vae: AutoencoderKLCogVideoX, |
|
transformer: CogVideoXTransformer3DModel, |
|
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler |
|
) |
|
self.vae_scale_factor_spatial = ( |
|
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 |
|
) |
|
self.vae_scale_factor_temporal = ( |
|
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 |
|
) |
|
|
|
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.mask_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True |
|
) |
|
|
|
def _get_t5_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_videos_per_prompt: int = 1, |
|
max_sequence_length: int = 226, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
add_special_tokens=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because `max_sequence_length` is set to " |
|
f" {max_sequence_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] |
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) |
|
|
|
return prompt_embeds |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
do_classifier_free_guidance: bool = True, |
|
num_videos_per_prompt: int = 1, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
max_sequence_length: int = 226, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): |
|
Whether to use classifier free guidance or not. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
device: (`torch.device`, *optional*): |
|
torch device |
|
dtype: (`torch.dtype`, *optional*): |
|
torch dtype |
|
""" |
|
device = device or self._execution_device |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
if prompt is not None: |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
prompt_embeds = self._get_t5_prompt_embeds( |
|
prompt=prompt, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt |
|
|
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
|
|
negative_prompt_embeds = self._get_t5_prompt_embeds( |
|
prompt=negative_prompt, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
video_length, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
video=None, |
|
timestep=None, |
|
is_strength_max=True, |
|
return_noise=False, |
|
return_video_latents=False, |
|
): |
|
shape = ( |
|
batch_size, |
|
(video_length - 1) // self.vae_scale_factor_temporal + 1, |
|
num_channels_latents, |
|
height // self.vae_scale_factor_spatial, |
|
width // self.vae_scale_factor_spatial, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if return_video_latents or (latents is None and not is_strength_max): |
|
video = video.to(device=device, dtype=self.vae.dtype) |
|
|
|
bs = 1 |
|
new_video = [] |
|
for i in range(0, video.shape[0], bs): |
|
video_bs = video[i : i + bs] |
|
video_bs = self.vae.encode(video_bs)[0] |
|
video_bs = video_bs.sample() |
|
new_video.append(video_bs) |
|
video = torch.cat(new_video, dim = 0) |
|
video = video * self.vae.config.scaling_factor |
|
|
|
video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1) |
|
video_latents = video_latents.to(device=device, dtype=dtype) |
|
video_latents = rearrange(video_latents, "b c f h w -> b f c h w") |
|
|
|
if latents is None: |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep) |
|
|
|
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents |
|
else: |
|
noise = latents.to(device) |
|
latents = noise * self.scheduler.init_noise_sigma |
|
|
|
|
|
outputs = (latents,) |
|
|
|
if return_noise: |
|
outputs += (noise,) |
|
|
|
if return_video_latents: |
|
outputs += (video_latents,) |
|
|
|
return outputs |
|
|
|
def prepare_mask_latents( |
|
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance, noise_aug_strength |
|
): |
|
|
|
|
|
|
|
|
|
if mask is not None: |
|
mask = mask.to(device=device, dtype=self.vae.dtype) |
|
bs = 1 |
|
new_mask = [] |
|
for i in range(0, mask.shape[0], bs): |
|
mask_bs = mask[i : i + bs] |
|
mask_bs = self.vae.encode(mask_bs)[0] |
|
mask_bs = mask_bs.mode() |
|
new_mask.append(mask_bs) |
|
mask = torch.cat(new_mask, dim = 0) |
|
mask = mask * self.vae.config.scaling_factor |
|
|
|
if masked_image is not None: |
|
if self.transformer.config.add_noise_in_inpaint_model: |
|
masked_image = add_noise_to_reference_video(masked_image, ratio=noise_aug_strength) |
|
masked_image = masked_image.to(device=device, dtype=self.vae.dtype) |
|
bs = 1 |
|
new_mask_pixel_values = [] |
|
for i in range(0, masked_image.shape[0], bs): |
|
mask_pixel_values_bs = masked_image[i : i + bs] |
|
mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0] |
|
mask_pixel_values_bs = mask_pixel_values_bs.mode() |
|
new_mask_pixel_values.append(mask_pixel_values_bs) |
|
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0) |
|
masked_image_latents = masked_image_latents * self.vae.config.scaling_factor |
|
else: |
|
masked_image_latents = None |
|
|
|
return mask, masked_image_latents |
|
|
|
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: |
|
latents = latents.permute(0, 2, 1, 3, 4) |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
|
|
frames = self.vae.decode(latents).sample |
|
frames = (frames / 2 + 0.5).clamp(0, 1) |
|
|
|
frames = frames.cpu().float().numpy() |
|
return frames |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt, |
|
callback_on_step_end_tensor_inputs, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
def fuse_qkv_projections(self) -> None: |
|
r"""Enables fused QKV projections.""" |
|
self.fusing_transformer = True |
|
self.transformer.fuse_qkv_projections() |
|
|
|
def unfuse_qkv_projections(self) -> None: |
|
r"""Disable QKV projection fusion if enabled.""" |
|
if not self.fusing_transformer: |
|
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") |
|
else: |
|
self.transformer.unfuse_qkv_projections() |
|
self.fusing_transformer = False |
|
|
|
def _prepare_rotary_positional_embeddings( |
|
self, |
|
height: int, |
|
width: int, |
|
num_frames: int, |
|
device: torch.device, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) |
|
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) |
|
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) |
|
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) |
|
|
|
grid_crops_coords = get_resize_crop_region_for_grid( |
|
(grid_height, grid_width), base_size_width, base_size_height |
|
) |
|
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( |
|
embed_dim=self.transformer.config.attention_head_dim, |
|
crops_coords=grid_crops_coords, |
|
grid_size=(grid_height, grid_width), |
|
temporal_size=num_frames, |
|
use_real=True, |
|
) |
|
|
|
freqs_cos = freqs_cos.to(device=device) |
|
freqs_sin = freqs_sin.to(device=device) |
|
return freqs_cos, freqs_sin |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
height: int = 480, |
|
width: int = 720, |
|
video: Union[torch.FloatTensor] = None, |
|
mask_video: Union[torch.FloatTensor] = None, |
|
masked_video_latents: Union[torch.FloatTensor] = None, |
|
num_frames: int = 49, |
|
num_inference_steps: int = 50, |
|
timesteps: Optional[List[int]] = None, |
|
guidance_scale: float = 6, |
|
use_dynamic_cfg: bool = False, |
|
num_videos_per_prompt: int = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: str = "numpy", |
|
return_dict: bool = False, |
|
callback_on_step_end: Optional[ |
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 226, |
|
strength: float = 1, |
|
noise_aug_strength: float = 0.0563, |
|
comfyui_progressbar: bool = False, |
|
) -> Union[CogVideoX_Fun_PipelineOutput, Tuple]: |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_frames (`int`, defaults to `48`): |
|
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will |
|
contain 1 extra frame because CogVideoX_Fun is conditioned with (num_seconds * fps + 1) frames where |
|
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that |
|
needs to be satisfied is that of divisibility mentioned above. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of videos to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int`, defaults to `226`): |
|
Maximum sequence length in encoded prompt. Must be consistent with |
|
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] or `tuple`: |
|
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoX_Fun_PipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
if num_frames > 49: |
|
raise ValueError( |
|
"The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation." |
|
) |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial |
|
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial |
|
num_videos_per_prompt = 1 |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt, |
|
callback_on_step_end_tensor_inputs, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
self._guidance_scale = guidance_scale |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
negative_prompt, |
|
do_classifier_free_guidance, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
max_sequence_length=max_sequence_length, |
|
device=device, |
|
) |
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps( |
|
num_inference_steps=num_inference_steps, strength=strength, device=device |
|
) |
|
self._num_timesteps = len(timesteps) |
|
if comfyui_progressbar: |
|
from comfy.utils import ProgressBar |
|
pbar = ProgressBar(num_inference_steps + 2) |
|
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) |
|
|
|
is_strength_max = strength == 1.0 |
|
|
|
|
|
if video is not None: |
|
video_length = video.shape[2] |
|
init_video = self.image_processor.preprocess(rearrange(video, "b c f h w -> (b f) c h w"), height=height, width=width) |
|
init_video = init_video.to(dtype=torch.float32) |
|
init_video = rearrange(init_video, "(b f) c h w -> b c f h w", f=video_length) |
|
else: |
|
init_video = None |
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
num_channels_transformer = self.transformer.config.in_channels |
|
return_image_latents = num_channels_transformer == num_channels_latents |
|
|
|
latents_outputs = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
video_length, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
video=init_video, |
|
timestep=latent_timestep, |
|
is_strength_max=is_strength_max, |
|
return_noise=True, |
|
return_video_latents=return_image_latents, |
|
) |
|
if return_image_latents: |
|
latents, noise, image_latents = latents_outputs |
|
else: |
|
latents, noise = latents_outputs |
|
if comfyui_progressbar: |
|
pbar.update(1) |
|
|
|
if mask_video is not None: |
|
if (mask_video == 255).all(): |
|
mask_latents = torch.zeros_like(latents)[:, :, :1].to(latents.device, latents.dtype) |
|
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype) |
|
|
|
mask_input = torch.cat([mask_latents] * 2) if do_classifier_free_guidance else mask_latents |
|
masked_video_latents_input = ( |
|
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents |
|
) |
|
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=2).to(latents.dtype) |
|
else: |
|
|
|
video_length = video.shape[2] |
|
mask_condition = self.mask_processor.preprocess(rearrange(mask_video, "b c f h w -> (b f) c h w"), height=height, width=width) |
|
mask_condition = mask_condition.to(dtype=torch.float32) |
|
mask_condition = rearrange(mask_condition, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
if num_channels_transformer != num_channels_latents: |
|
mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1]) |
|
if masked_video_latents is None: |
|
masked_video = init_video * (mask_condition_tile < 0.5) + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1 |
|
else: |
|
masked_video = masked_video_latents |
|
|
|
_, masked_video_latents = self.prepare_mask_latents( |
|
None, |
|
masked_video, |
|
batch_size, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
do_classifier_free_guidance, |
|
noise_aug_strength=noise_aug_strength, |
|
) |
|
mask_latents = resize_mask(1 - mask_condition, masked_video_latents) |
|
mask_latents = mask_latents.to(masked_video_latents.device) * self.vae.config.scaling_factor |
|
|
|
mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1]) |
|
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype) |
|
|
|
mask_input = torch.cat([mask_latents] * 2) if do_classifier_free_guidance else mask_latents |
|
masked_video_latents_input = ( |
|
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents |
|
) |
|
|
|
mask = rearrange(mask, "b c f h w -> b f c h w") |
|
mask_input = rearrange(mask_input, "b c f h w -> b f c h w") |
|
masked_video_latents_input = rearrange(masked_video_latents_input, "b c f h w -> b f c h w") |
|
|
|
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=2).to(latents.dtype) |
|
else: |
|
mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1]) |
|
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype) |
|
mask = rearrange(mask, "b c f h w -> b f c h w") |
|
|
|
inpaint_latents = None |
|
else: |
|
if num_channels_transformer != num_channels_latents: |
|
mask = torch.zeros_like(latents).to(latents.device, latents.dtype) |
|
masked_video_latents = torch.zeros_like(latents).to(latents.device, latents.dtype) |
|
|
|
mask_input = torch.cat([mask] * 2) if do_classifier_free_guidance else mask |
|
masked_video_latents_input = ( |
|
torch.cat([masked_video_latents] * 2) if do_classifier_free_guidance else masked_video_latents |
|
) |
|
inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(latents.dtype) |
|
else: |
|
mask = torch.zeros_like(init_video[:, :1]) |
|
mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1]) |
|
mask = F.interpolate(mask, size=latents.size()[-3:], mode='trilinear', align_corners=True).to(latents.device, latents.dtype) |
|
mask = rearrange(mask, "b c f h w -> b f c h w") |
|
|
|
inpaint_latents = None |
|
if comfyui_progressbar: |
|
pbar.update(1) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
image_rotary_emb = ( |
|
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) |
|
if self.transformer.config.use_rotary_positional_embeddings |
|
else None |
|
) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
|
|
old_pred_original_sample = None |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]) |
|
|
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep=timestep, |
|
image_rotary_emb=image_rotary_emb, |
|
return_dict=False, |
|
inpaint_latents=inpaint_latents, |
|
)[0] |
|
noise_pred = noise_pred.float() |
|
|
|
|
|
if use_dynamic_cfg: |
|
self._guidance_scale = 1 + guidance_scale * ( |
|
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 |
|
) |
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if not isinstance(self.scheduler, CogVideoXDPMScheduler): |
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
else: |
|
latents, old_pred_original_sample = self.scheduler.step( |
|
noise_pred, |
|
old_pred_original_sample, |
|
t, |
|
timesteps[i - 1] if i > 0 else None, |
|
latents, |
|
**extra_step_kwargs, |
|
return_dict=False, |
|
) |
|
latents = latents.to(prompt_embeds.dtype) |
|
|
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if comfyui_progressbar: |
|
pbar.update(1) |
|
|
|
if output_type == "numpy": |
|
video = self.decode_latents(latents) |
|
elif not output_type == "latent": |
|
video = self.decode_latents(latents) |
|
video = self.video_processor.postprocess_video(video=video, output_type=output_type) |
|
else: |
|
video = latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
video = torch.from_numpy(video) |
|
|
|
return CogVideoX_Fun_PipelineOutput(videos=video) |
|
|