maxidl commited on
Commit
4eb0203
·
1 Parent(s): 089224a
Files changed (1) hide show
  1. app.py +16 -51
app.py CHANGED
@@ -1,63 +1,28 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
62
 
63
  if __name__ == "__main__":
 
1
  import gradio as gr
 
2
 
 
 
 
 
3
 
4
 
5
+ def generate(paper_text):
6
+ return "Success"
 
 
 
 
 
 
 
7
 
 
 
 
 
 
8
 
 
9
 
10
+ with gr.Blocks() as demo:
11
+ title = gr.Markdown(title)
12
+ steps = gr.Markdown(steps)
13
+ instr = gr.Markdown("## Upload your paper as a pdf file")
14
+ file_input = gr.File(file_types=[".pdf"], file_count="single")
15
+ markdown_field = gr.Textbox(label="Markdown", max_lines=20, autoscroll=False)
16
+ # generate_button = gr.Button("Generate Review", interactive=not markdown_field)
17
+ generate_button = gr.Button("Generate Review")
18
+ file_input.upload(process_file, file_input, markdown_field)
19
+ # markdown_field.change(lambda text: gr.update(interactive=True) if len(text) > 1000 else gr.update(interactive=False), markdown_field, generate_button)
20
 
21
+ review_field = gr.Markdown(label="Review")
22
+ # generate_button.click(fn=lambda: gr.update(interactive=False), inputs=None, outputs=generate_button).then(generate, markdown_field, review_field).then(fn=lambda: gr.update(interactive=True), inputs=None, outputs=generate_button)
23
+ generate_button.click(fn=lambda: gr.update(interactive=False), inputs=None, outputs=generate_button).then(generate, markdown_field, review_field).then(fn=lambda: gr.update(interactive=True), inputs=None, outputs=generate_button)
24
+ demo.title = "Paper Review Generator"
 
 
 
 
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
 
28
  if __name__ == "__main__":