maximuspowers commited on
Commit
05dce30
·
verified ·
1 Parent(s): 76b46b5

Create process-vocab.py

Browse files
Files changed (1) hide show
  1. process-vocab.py +60 -0
process-vocab.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from transformers import BertTokenizerFast, BertForTokenClassification
4
+ from tqdm import tqdm
5
+ import json
6
+
7
+ # init
8
+ tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
9
+ model = BertForTokenClassification.from_pretrained('maximuspowers/bias-detection-ner', output_hidden_states=True)
10
+ model.eval()
11
+ model.to('cuda')
12
+
13
+ # get bert's entire vocab
14
+ vocab_tokens = list(tokenizer.get_vocab().keys())
15
+ print(f"Total number of tokens in vocabulary: {len(vocab_tokens)}") # 30522 tokens for bert-base-uncased
16
+
17
+ # precompute embeddings and attention scores for the entire vocabulary
18
+ def precompute_vocabulary_embeddings_and_attention():
19
+ vocab_embeddings = []
20
+ vocab_attention_scores = []
21
+
22
+ for token in tqdm(vocab_tokens, desc="Computing Embeddings and Attention Scores", unit="token"):
23
+ # no special tokens
24
+ inputs = tokenizer(token, return_tensors="pt", truncation=True, padding=True, add_special_tokens=False)
25
+ input_ids = inputs['input_ids'].to(model.device)
26
+
27
+ with torch.no_grad():
28
+ outputs = model(input_ids=input_ids)
29
+
30
+ embeddings = outputs.hidden_states[-1][0][0].cpu().numpy() # first token embedding, should only be one anyways
31
+ vocab_embeddings.append(embeddings)
32
+
33
+ logits = outputs.logits
34
+ probabilities = torch.sigmoid(logits).cpu().numpy()[0][0] # convert logits to probabilities
35
+
36
+ # store attention scores
37
+ attention_scores = {
38
+ 'O': float(probabilities[0]), # O class (non-entity)
39
+ 'B-GEN': float(probabilities[3]), # B-GEN
40
+ 'I-GEN': float(probabilities[4]), # I-GEN
41
+ 'B-UNFAIR': float(probabilities[5]), # B-UNFAIR
42
+ 'I-UNFAIR': float(probabilities[6]), # I-UNFAIR
43
+ 'B-STEREO': float(probabilities[1]), # B-STEREO
44
+ 'I-STEREO': float(probabilities[2]) # I-STEREO
45
+ }
46
+ vocab_attention_scores.append(attention_scores)
47
+
48
+ return np.array(vocab_embeddings), vocab_attention_scores
49
+
50
+
51
+ # precompute
52
+ vocab_embeddings, vocab_attention_scores = precompute_vocabulary_embeddings_and_attention()
53
+
54
+ # save files
55
+ np.save('vocab_embeddings.npy', vocab_embeddings)
56
+ with open('vocab_attention_scores.json', 'w') as f:
57
+ json.dump(vocab_attention_scores, f)
58
+
59
+ with open('vocab_tokens.json', 'w') as f:
60
+ json.dump(vocab_tokens, f)