File size: 13,728 Bytes
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb85fbd
 
 
 
 
 
 
 
 
 
 
 
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb85fbd
be791d6
 
 
 
e9a18fc
 
 
 
 
 
be791d6
 
 
 
 
e9a18fc
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import gradio as gr
import os
import torch
import argparse
import torchvision


from pipelines.pipeline_videogen import VideoGenPipeline
from diffusers.schedulers import DDIMScheduler
from diffusers.models import AutoencoderKL
from diffusers.models import AutoencoderKLTemporalDecoder
from transformers import CLIPTokenizer, CLIPTextModel
from omegaconf import OmegaConf

import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from models import get_models
import imageio
from PIL import Image
import numpy as np
from datasets import video_transforms
from torchvision import transforms
from einops import rearrange, repeat
from utils import dct_low_pass_filter, exchanged_mixed_dct_freq
from copy import deepcopy
import spaces
import requests
from datetime import datetime
import random
    
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/sample.yaml")
args = parser.parse_args()
args = OmegaConf.load(args.config)

torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 # torch.float16

unet = get_models(args).to(device, dtype=dtype)

if args.enable_vae_temporal_decoder:
    if args.use_dct:
        vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float64).to(device)
    else:
        vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device)
    vae = deepcopy(vae_for_base_content).to(dtype=dtype)
else:
    vae_for_base_content = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae",).to(device, dtype=torch.float64)
    vae = deepcopy(vae_for_base_content).to(dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=dtype).to(device) # huge

# set eval mode
unet.eval()
vae.eval()
text_encoder.eval()

basedir        = os.getcwd()
savedir        = os.path.join(basedir, "samples/Gradio", datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
savedir_sample = os.path.join(savedir, "sample")
os.makedirs(savedir, exist_ok=True)

def update_and_resize_image(input_image_path, height_slider, width_slider):
    if input_image_path.startswith("http://") or input_image_path.startswith("https://"):
        pil_image = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB')
    else:
        pil_image = Image.open(input_image_path).convert('RGB')
    
    original_width, original_height = pil_image.size

    if original_height == height_slider and original_width == width_slider:
        return gr.Image(value=np.array(pil_image))
    
    ratio1 = height_slider / original_height
    ratio2 = width_slider / original_width
    
    if ratio1 > ratio2:
        new_width = int(original_width * ratio1)
        new_height = int(original_height * ratio1)
    else:
        new_width = int(original_width * ratio2)
        new_height = int(original_height * ratio2)
    
    pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
    
    left = (new_width - width_slider) / 2
    top = (new_height - height_slider) / 2
    right = left + width_slider
    bottom = top + height_slider
    
    pil_image = pil_image.crop((left, top, right, bottom))
    
    return gr.Image(value=np.array(pil_image))


def update_textbox_and_save_image(input_image, height_slider, width_slider):
    pil_image = Image.fromarray(input_image.astype(np.uint8)).convert("RGB")

    original_width, original_height = pil_image.size
    
    ratio1 = height_slider / original_height
    ratio2 = width_slider / original_width
    
    if ratio1 > ratio2:
        new_width = int(original_width * ratio1)
        new_height = int(original_height * ratio1)
    else:
        new_width = int(original_width * ratio2)
        new_height = int(original_height * ratio2)
    
    pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS)
    
    left = (new_width - width_slider) / 2
    top = (new_height - height_slider) / 2
    right = left + width_slider
    bottom = top + height_slider
    
    pil_image = pil_image.crop((left, top, right, bottom))

    img_path = os.path.join(savedir, "input_image.png")
    pil_image.save(img_path)

    return gr.Textbox(value=img_path), gr.Image(value=np.array(pil_image))

def prepare_image(image, vae, transform_video, device, dtype=torch.float16):
    image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0).permute(0, 3, 1, 2)
    image = transform_video(image)
    image = vae.encode(image.to(dtype=dtype, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor)
    image = image.unsqueeze(2)
    return image


@spaces.GPU
def gen_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed):

    torch.manual_seed(seed)

    scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path, 
                                              subfolder="scheduler",
                                              beta_start=args.beta_start, 
                                              beta_end=args.beta_end, 
                                              beta_schedule=args.beta_schedule)

    videogen_pipeline = VideoGenPipeline(vae=vae, 
                                         text_encoder=text_encoder, 
                                         tokenizer=tokenizer, 
                                         scheduler=scheduler, 
                                         unet=unet).to(device)
    # videogen_pipeline.enable_xformers_memory_efficient_attention()

    transform_video = transforms.Compose([
        video_transforms.ToTensorVideo(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
    ])

    if args.use_dct:
        base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float64).to(device)
    else:
        base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float16).to(device)

    if use_dctinit:
        # filter params
        print("Using DCT!")
        base_content_repeat = repeat(base_content, 'b c f h w -> b c (f r) h w', r=15).contiguous()

        # define filter
        freq_filter = dct_low_pass_filter(dct_coefficients=base_content, percentage=dct_coefficients)
        
        noise = torch.randn(1, 4, 15, 40, 64).to(device)

        # add noise to base_content
        diffuse_timesteps = torch.full((1,),int(noise_level))
        diffuse_timesteps = diffuse_timesteps.long()
        
        # 3d content
        base_content_noise = scheduler.add_noise(
            original_samples=base_content_repeat.to(device), 
            noise=noise, 
            timesteps=diffuse_timesteps.to(device))
        
        # 3d content
        latents = exchanged_mixed_dct_freq(noise=noise,
                    base_content=base_content_noise,
                    LPF_3d=freq_filter).to(dtype=torch.float16)
        
    base_content = base_content.to(dtype=torch.float16)

    videos = videogen_pipeline(prompt, 
                               negative_prompt=negative_prompt,
                               latents=latents if use_dctinit else None,
                               base_content=base_content,
                               video_length=15, 
                               height=height, 
                               width=width, 
                               num_inference_steps=diffusion_step,
                               guidance_scale=scfg_scale,
                               motion_bucket_id=100-motion_bucket_id,
                               enable_vae_temporal_decoder=args.enable_vae_temporal_decoder).video
    
    save_path = args.save_img_path + 'temp' + '.mp4'
    # torchvision.io.write_video(save_path, videos[0], fps=8, video_codec='h264', options={'crf': '10'})
    imageio.mimwrite(save_path, videos[0], fps=8, quality=7)
    return save_path


if not os.path.exists(args.save_img_path):
    os.makedirs(args.save_img_path)


with gr.Blocks() as demo:

    gr.Markdown("<font color=red size=6.5><center>Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models</center></font>")
    gr.Markdown(
        """<div style="display: flex;align-items: center;justify-content: center">
        [<a href="https://arxiv.org/abs/2407.15642">Arxiv Report</a>] | [<a href="https://https://maxin-cn.github.io/cinemo_project/">Project Page</a>] | [<a href="https://github.com/maxin-cn/Cinemo">Github</a>]</div>
        """
    )


    with gr.Column(variant="panel"):
        with gr.Row():
            prompt_textbox = gr.Textbox(label="Prompt", lines=1)
            negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=1)
            
        with gr.Row(equal_height=False):
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(label="Input Image", interactive=True)
                    result_video = gr.Video(label="Generated Animation", interactive=False, autoplay=True)
        
        generate_button = gr.Button(value="Generate", variant='primary')
        
        with gr.Accordion("Advanced options", open=False):
            with gr.Column():
                with gr.Row():
                    input_image_path = gr.Textbox(label="Input Image URL", lines=1, scale=10, info="Press Enter or the Preview button to confirm the input image.")
                    preview_button = gr.Button(value="Preview")
                    
                with gr.Row():
                    sample_step_slider = gr.Slider(label="Sampling steps", value=50, minimum=10, maximum=250, step=1)

                with gr.Row():
                    seed_textbox = gr.Slider(label="Seed", value=100, minimum=1, maximum=int(1e8), step=1, interactive=True)
                    # seed_textbox = gr.Textbox(label="Seed", value=100)
                    # seed_button  = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
                    # seed_button.click(fn=lambda: gr.Textbox(value=random.randint(1, int(1e8))), inputs=[], outputs=[seed_textbox])
                
                with gr.Row():
                    height = gr.Slider(label="Height", value=320, minimum=0, maximum=512, step=16, interactive=False)
                    width  = gr.Slider(label="Width",  value=512, minimum=0, maximum=512, step=16, interactive=False)
                with gr.Row():
                    txt_cfg_scale = gr.Slider(label="CFG Scale",   value=7.5, minimum=1.0,   maximum=20.0, step=0.1, interactive=True)
                    motion_bucket_id = gr.Slider(label="Motion Intensity",   value=10, minimum=1,   maximum=20, step=1, interactive=True)
                
                with gr.Row():
                    use_dctinit = gr.Checkbox(label="Enable DCTInit", value=True)
                    dct_coefficients = gr.Slider(label="DCT Coefficients", value=0.23, minimum=0, maximum=1, step=0.01, interactive=True)
                    noise_level = gr.Slider(label="Noise Level", value=985, minimum=1, maximum=999, step=1, interactive=True)
        
        input_image.upload(fn=update_textbox_and_save_image, inputs=[input_image, height, width], outputs=[input_image_path, input_image])    
        preview_button.click(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])
        input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image])

        EXAMPLES = [
            ["./example/aircrafts_flying/0.jpg", "aircrafts flying"                   , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
            ["./example/fireworks/0.jpg", "fireworks"                                 , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
            ["./example/flowers_swaying/0.jpg", "flowers swaying"                     , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
            ["./example/girl_walking_on_the_beach/0.jpg", "girl walking on the beach" , 50, 320, 512, 7.5, True, 0.23, 985, 10, 200],
            ["./example/house_rotating/0.jpg", "house rotating"                       , 50, 320, 512, 7.5, True, 0.23, 985, 10, 100],
            ["./example/people_runing/0.jpg", "people runing"                         , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100],
]

        examples = gr.Examples(
            examples = EXAMPLES,
            fn = gen_video,
            inputs=[input_image, prompt_textbox, sample_step_slider, height, width, txt_cfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed_textbox],
            outputs=[result_video],
            # cache_examples=True,
            cache_examples="lazy",
        )

        generate_button.click(
                fn=gen_video,
                inputs=[
                    input_image,
                    prompt_textbox,
                    negative_prompt_textbox,
                    sample_step_slider,
                    height,
                    width,
                    txt_cfg_scale,
                    use_dctinit,
                    dct_coefficients,
                    noise_level,
                    motion_bucket_id,
                    seed_textbox,
                ],
                outputs=[result_video]
            )
    
demo.launch(debug=False, share=True)

# demo.launch(server_name="0.0.0.0", server_port=10034, enable_queue=True)