File size: 16,131 Bytes
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright 2023 The HuggingFace Team. All rights reserved.
# `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.models.activations import get_activation
from diffusers.models.normalization import AdaGroupNorm
from diffusers.models.attention_processor import SpatialNorm
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear

from einops import rearrange

class InflatedConv3d(nn.Conv2d):
    def forward(self, x):
        video_length = x.shape[2]

        x = rearrange(x, "b c f h w -> (b f) c h w")
        x = super().forward(x)
        x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)

        return x


class Upsample3D(nn.Module):
    """A 2D upsampling layer with an optional convolution.

    Parameters:
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        use_conv_transpose (`bool`, default `False`):
            option to use a convolution transpose.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
    """

    def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
        self.name = name

        conv = None
        if use_conv_transpose:
            conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
        elif use_conv:
            # conv = LoRACompatibleConv(self.channels, self.out_channels, 3, padding=1)
            conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)

        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv

    def forward(self, hidden_states, output_size=None):
        assert hidden_states.shape[1] == self.channels

        if self.use_conv_transpose:
            return self.conv(hidden_states)

        # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
        # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
        # https://github.com/pytorch/pytorch/issues/86679
        dtype = hidden_states.dtype
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(torch.float32)

        # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
        if hidden_states.shape[0] >= 64:
            hidden_states = hidden_states.contiguous()

        # if `output_size` is passed we force the interpolation output
        # size and do not make use of `scale_factor=2`
        if output_size is None:
            hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
        else:
            hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")

        # If the input is bfloat16, we cast back to bfloat16
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(dtype)

        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
        if self.use_conv:
            if self.name == "conv":
                hidden_states = self.conv(hidden_states)
            else:
                hidden_states = self.Conv2d_0(hidden_states)

        return hidden_states


class Downsample3D(nn.Module):
    """A 2D downsampling layer with an optional convolution.

    Parameters:
        channels (`int`):
            number of channels in the inputs and outputs.
        use_conv (`bool`, default `False`):
            option to use a convolution.
        out_channels (`int`, optional):
            number of output channels. Defaults to `channels`.
        padding (`int`, default `1`):
            padding for the convolution.
    """

    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
        stride = 2
        self.name = name

        if use_conv:
            # conv = LoRACompatibleConv(self.channels, self.out_channels, 3, stride=stride, padding=padding)
            conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            conv = nn.AvgPool2d(kernel_size=stride, stride=stride)

        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
        if name == "conv":
            self.Conv2d_0 = conv
            self.conv = conv
        elif name == "Conv2d_0":
            self.conv = conv
        else:
            self.conv = conv

    def forward(self, hidden_states):
        assert hidden_states.shape[1] == self.channels
        if self.use_conv and self.padding == 0:
            pad = (0, 1, 0, 1)
            hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)

        assert hidden_states.shape[1] == self.channels
        hidden_states = self.conv(hidden_states)

        return hidden_states

class ResnetBlock3D(nn.Module):
    r"""
    A Resnet block.

    Parameters:
        in_channels (`int`): The number of channels in the input.
        out_channels (`int`, *optional*, default to be `None`):
            The number of output channels for the first conv2d layer. If None, same as `in_channels`.
        dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
        temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
        groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
        groups_out (`int`, *optional*, default to None):
            The number of groups to use for the second normalization layer. if set to None, same as `groups`.
        eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
        non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
        time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
            By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
            "ada_group" for a stronger conditioning with scale and shift.
        kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
            [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
        output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
        use_in_shortcut (`bool`, *optional*, default to `True`):
            If `True`, add a 1x1 nn.conv2d layer for skip-connection.
        up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
        down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
        conv_shortcut_bias (`bool`, *optional*, default to `True`):  If `True`, adds a learnable bias to the
            `conv_shortcut` output.
        conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
            If None, same as `out_channels`.
    """

    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
        skip_time_act=False,
        time_embedding_norm="default",  # default, scale_shift, ada_group, spatial
        kernel=None,
        output_scale_factor=1.0,
        use_in_shortcut=None,
        up=False,
        down=False,
        conv_shortcut_bias: bool = True,
        conv_2d_out_channels: Optional[int] = None,
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor
        self.time_embedding_norm = time_embedding_norm
        self.skip_time_act = skip_time_act

        if groups_out is None:
            groups_out = groups

        if self.time_embedding_norm == "ada_group":
            self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
        elif self.time_embedding_norm == "spatial":
            self.norm1 = SpatialNorm(in_channels, temb_channels)
        else:
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)

        # self.conv1 = LoRACompatibleConv(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

        if temb_channels is not None:
            if self.time_embedding_norm == "default":
                self.time_emb_proj = LoRACompatibleLinear(temb_channels, out_channels)
            elif self.time_embedding_norm == "scale_shift":
                self.time_emb_proj = LoRACompatibleLinear(temb_channels, 2 * out_channels)
            elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
                self.time_emb_proj = None
            else:
                raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
        else:
            self.time_emb_proj = None

        if self.time_embedding_norm == "ada_group":
            self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
        elif self.time_embedding_norm == "spatial":
            self.norm2 = SpatialNorm(out_channels, temb_channels)
        else:
            self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)

        self.dropout = torch.nn.Dropout(dropout)
        conv_2d_out_channels = conv_2d_out_channels or out_channels
        # self.conv2 = LoRACompatibleConv(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
        self.conv2 = InflatedConv3d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)

        self.nonlinearity = get_activation(non_linearity)

        self.upsample = self.downsample = None
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
                self.upsample = Upsample3D(in_channels, use_conv=False)
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
                self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
                self.downsample = Downsample3D(in_channels, use_conv=False, padding=1, name="op")

        self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut

        self.conv_shortcut = None
        if self.use_in_shortcut:
            # self.conv_shortcut = LoRACompatibleConv(
            #     in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias
            # )
            self.conv_shortcut = InflatedConv3d(
                in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias
            )

    def forward(self, input_tensor, temb):
        hidden_states = input_tensor

        if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
            hidden_states = self.norm1(hidden_states, temb)
        else:
            hidden_states = self.norm1(hidden_states)

        hidden_states = self.nonlinearity(hidden_states)

        if self.upsample is not None:
            # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
            input_tensor = self.upsample(input_tensor)
            hidden_states = self.upsample(hidden_states)
        elif self.downsample is not None:
            input_tensor = self.downsample(input_tensor)
            hidden_states = self.downsample(hidden_states)

        hidden_states = self.conv1(hidden_states)

        # print(self.time_emb_proj) # LoRACompatibleLinear(in_features=1280, out_features=320, bias=True)
        # print(self.nonlinearity) # SiLU()

        if self.time_emb_proj is not None:
            if not self.skip_time_act:
                temb = self.nonlinearity(temb)
            temb = self.time_emb_proj(temb)
            # temb = temb[:, :, None, None, None]
            # if self.training:
            #     temb = rearrange(temb, 'b f d -> b d f')[..., None, None]
            # else:
            #     temb = temb[:, :, None, None, None]
            temb = temb[:, :, None, None, None]
            # print(temb.shape)

        if temb is not None and self.time_embedding_norm == "default":
            # print(hidden_states.shape)
            hidden_states = hidden_states + temb

            # torch.Size([2, 320, 21, 32, 32])
            # torch.Size([2, 320, 1, 1, 1])
            # torch.Size([2, 320, 21, 32, 32])
            # torch.Size([2, 320, 1, 1, 1])
            # torch.Size([2, 640, 21, 16, 16])
            # torch.Size([2, 640, 1, 1, 1])
            # torch.Size([2, 640, 21, 16, 16])
            # torch.Size([2, 640, 1, 1, 1])
            # torch.Size([2, 1280, 21, 8, 8])
            # torch.Size([2, 1280, 1, 1, 1])
            # torch.Size([2, 1280, 21, 8, 8])
            # torch.Size([2, 1280, 1, 1, 1])
            # torch.Size([2, 1280, 21, 4, 4])
            # torch.Size([2, 1280, 1, 1, 1])

        if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
            hidden_states = self.norm2(hidden_states, temb)
        else:
            hidden_states = self.norm2(hidden_states)

        if temb is not None and self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
            hidden_states = hidden_states * (1 + scale) + shift

        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = (input_tensor + hidden_states) / self.output_scale_factor

        return output_tensor