Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from functools import partial | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.models.activations import get_activation | |
from diffusers.models.normalization import AdaGroupNorm | |
from diffusers.models.attention_processor import SpatialNorm | |
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear | |
from einops import rearrange | |
class InflatedConv3d(nn.Conv2d): | |
def forward(self, x): | |
video_length = x.shape[2] | |
x = rearrange(x, "b c f h w -> (b f) c h w") | |
x = super().forward(x) | |
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
return x | |
class Upsample3D(nn.Module): | |
"""A 2D upsampling layer with an optional convolution. | |
Parameters: | |
channels (`int`): | |
number of channels in the inputs and outputs. | |
use_conv (`bool`, default `False`): | |
option to use a convolution. | |
use_conv_transpose (`bool`, default `False`): | |
option to use a convolution transpose. | |
out_channels (`int`, optional): | |
number of output channels. Defaults to `channels`. | |
""" | |
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
conv = None | |
if use_conv_transpose: | |
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) | |
elif use_conv: | |
# conv = LoRACompatibleConv(self.channels, self.out_channels, 3, padding=1) | |
conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.conv = conv | |
else: | |
self.Conv2d_0 = conv | |
def forward(self, hidden_states, output_size=None): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv_transpose: | |
return self.conv(hidden_states) | |
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch | |
# https://github.com/pytorch/pytorch/issues/86679 | |
dtype = hidden_states.dtype | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(torch.float32) | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
hidden_states = hidden_states.contiguous() | |
# if `output_size` is passed we force the interpolation output | |
# size and do not make use of `scale_factor=2` | |
if output_size is None: | |
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") | |
else: | |
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
# If the input is bfloat16, we cast back to bfloat16 | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(dtype) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if self.use_conv: | |
if self.name == "conv": | |
hidden_states = self.conv(hidden_states) | |
else: | |
hidden_states = self.Conv2d_0(hidden_states) | |
return hidden_states | |
class Downsample3D(nn.Module): | |
"""A 2D downsampling layer with an optional convolution. | |
Parameters: | |
channels (`int`): | |
number of channels in the inputs and outputs. | |
use_conv (`bool`, default `False`): | |
option to use a convolution. | |
out_channels (`int`, optional): | |
number of output channels. Defaults to `channels`. | |
padding (`int`, default `1`): | |
padding for the convolution. | |
""" | |
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
# conv = LoRACompatibleConv(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.Conv2d_0 = conv | |
self.conv = conv | |
elif name == "Conv2d_0": | |
self.conv = conv | |
else: | |
self.conv = conv | |
def forward(self, hidden_states): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv and self.padding == 0: | |
pad = (0, 1, 0, 1) | |
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) | |
assert hidden_states.shape[1] == self.channels | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class ResnetBlock3D(nn.Module): | |
r""" | |
A Resnet block. | |
Parameters: | |
in_channels (`int`): The number of channels in the input. | |
out_channels (`int`, *optional*, default to be `None`): | |
The number of output channels for the first conv2d layer. If None, same as `in_channels`. | |
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. | |
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. | |
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. | |
groups_out (`int`, *optional*, default to None): | |
The number of groups to use for the second normalization layer. if set to None, same as `groups`. | |
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. | |
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. | |
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. | |
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or | |
"ada_group" for a stronger conditioning with scale and shift. | |
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see | |
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. | |
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. | |
use_in_shortcut (`bool`, *optional*, default to `True`): | |
If `True`, add a 1x1 nn.conv2d layer for skip-connection. | |
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. | |
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. | |
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the | |
`conv_shortcut` output. | |
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. | |
If None, same as `out_channels`. | |
""" | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
temb_channels=512, | |
groups=32, | |
groups_out=None, | |
pre_norm=True, | |
eps=1e-6, | |
non_linearity="swish", | |
skip_time_act=False, | |
time_embedding_norm="default", # default, scale_shift, ada_group, spatial | |
kernel=None, | |
output_scale_factor=1.0, | |
use_in_shortcut=None, | |
up=False, | |
down=False, | |
conv_shortcut_bias: bool = True, | |
conv_2d_out_channels: Optional[int] = None, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.up = up | |
self.down = down | |
self.output_scale_factor = output_scale_factor | |
self.time_embedding_norm = time_embedding_norm | |
self.skip_time_act = skip_time_act | |
if groups_out is None: | |
groups_out = groups | |
if self.time_embedding_norm == "ada_group": | |
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) | |
elif self.time_embedding_norm == "spatial": | |
self.norm1 = SpatialNorm(in_channels, temb_channels) | |
else: | |
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
# self.conv1 = LoRACompatibleConv(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
if self.time_embedding_norm == "default": | |
self.time_emb_proj = LoRACompatibleLinear(temb_channels, out_channels) | |
elif self.time_embedding_norm == "scale_shift": | |
self.time_emb_proj = LoRACompatibleLinear(temb_channels, 2 * out_channels) | |
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": | |
self.time_emb_proj = None | |
else: | |
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
else: | |
self.time_emb_proj = None | |
if self.time_embedding_norm == "ada_group": | |
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) | |
elif self.time_embedding_norm == "spatial": | |
self.norm2 = SpatialNorm(out_channels, temb_channels) | |
else: | |
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(dropout) | |
conv_2d_out_channels = conv_2d_out_channels or out_channels | |
# self.conv2 = LoRACompatibleConv(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) | |
self.conv2 = InflatedConv3d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) | |
self.nonlinearity = get_activation(non_linearity) | |
self.upsample = self.downsample = None | |
if self.up: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") | |
else: | |
self.upsample = Upsample3D(in_channels, use_conv=False) | |
elif self.down: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) | |
else: | |
self.downsample = Downsample3D(in_channels, use_conv=False, padding=1, name="op") | |
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
# self.conv_shortcut = LoRACompatibleConv( | |
# in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias | |
# ) | |
self.conv_shortcut = InflatedConv3d( | |
in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias | |
) | |
def forward(self, input_tensor, temb): | |
hidden_states = input_tensor | |
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": | |
hidden_states = self.norm1(hidden_states, temb) | |
else: | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = self.upsample(input_tensor) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
input_tensor = self.downsample(input_tensor) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
# print(self.time_emb_proj) # LoRACompatibleLinear(in_features=1280, out_features=320, bias=True) | |
# print(self.nonlinearity) # SiLU() | |
if self.time_emb_proj is not None: | |
if not self.skip_time_act: | |
temb = self.nonlinearity(temb) | |
temb = self.time_emb_proj(temb) | |
# temb = temb[:, :, None, None, None] | |
# if self.training: | |
# temb = rearrange(temb, 'b f d -> b d f')[..., None, None] | |
# else: | |
# temb = temb[:, :, None, None, None] | |
temb = temb[:, :, None, None, None] | |
# print(temb.shape) | |
if temb is not None and self.time_embedding_norm == "default": | |
# print(hidden_states.shape) | |
hidden_states = hidden_states + temb | |
# torch.Size([2, 320, 21, 32, 32]) | |
# torch.Size([2, 320, 1, 1, 1]) | |
# torch.Size([2, 320, 21, 32, 32]) | |
# torch.Size([2, 320, 1, 1, 1]) | |
# torch.Size([2, 640, 21, 16, 16]) | |
# torch.Size([2, 640, 1, 1, 1]) | |
# torch.Size([2, 640, 21, 16, 16]) | |
# torch.Size([2, 640, 1, 1, 1]) | |
# torch.Size([2, 1280, 21, 8, 8]) | |
# torch.Size([2, 1280, 1, 1, 1]) | |
# torch.Size([2, 1280, 21, 8, 8]) | |
# torch.Size([2, 1280, 1, 1, 1]) | |
# torch.Size([2, 1280, 21, 4, 4]) | |
# torch.Size([2, 1280, 1, 1, 1]) | |
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": | |
hidden_states = self.norm2(hidden_states, temb) | |
else: | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor |