File size: 19,395 Bytes
94bafa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import random
from typing import Dict, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from omegaconf import DictConfig

from tools.torch_utils import persistence
from tools.torch_utils.ops import bias_act, upfirdn2d, conv2d_resample
from tools.torch_utils import misc

#----------------------------------------------------------------------------

@misc.profiled_function
def normalize_2nd_moment(x, dim=1, eps=1e-8):
    return x * (x.square().mean(dim=dim, keepdim=True) + eps).rsqrt()

#----------------------------------------------------------------------------

@persistence.persistent_class
class MappingNetwork(torch.nn.Module):
    def __init__(self,
        z_dim,                      # Input latent (Z) dimensionality, 0 = no latent.
        c_dim,                      # Conditioning label (C) dimensionality, 0 = no label.
        w_dim,                      # Intermediate latent (W) dimensionality.
        num_ws,                     # Number of intermediate latents to output, None = do not broadcast.
        num_layers      = 8,        # Number of mapping layers.
        embed_features  = None,     # Label embedding dimensionality, None = same as w_dim.
        layer_features  = None,     # Number of intermediate features in the mapping layers, None = same as w_dim.
        activation      = 'lrelu',  # Activation function: 'relu', 'lrelu', etc.
        lr_multiplier   = 0.01,     # Learning rate multiplier for the mapping layers.
        w_avg_beta      = 0.995,    # Decay for tracking the moving average of W during training, None = do not track.
        cfg             = {},       # Additional config
    ):
        super().__init__()

        self.cfg = cfg
        self.z_dim = z_dim
        self.c_dim = c_dim
        self.w_dim = w_dim
        self.num_ws = num_ws
        self.num_layers = num_layers
        self.w_avg_beta = w_avg_beta

        if embed_features is None:
            embed_features = w_dim
        if c_dim == 0:
            embed_features = 0
        if layer_features is None:
            layer_features = w_dim

        features_list = [z_dim + embed_features] + [layer_features] * (num_layers - 1) + [w_dim]

        if c_dim > 0:
            self.embed = FullyConnectedLayer(c_dim, embed_features)

        for idx in range(num_layers):
            in_features = features_list[idx]
            out_features = features_list[idx + 1]
            layer = FullyConnectedLayer(in_features, out_features, activation=activation, lr_multiplier=lr_multiplier)
            setattr(self, f'fc{idx}', layer)

        if num_ws is not None and w_avg_beta is not None:
            self.register_buffer('w_avg', torch.zeros([w_dim]))

    def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, skip_w_avg_update=False):
        # Embed, normalize, and concat inputs.
        x = None
        with torch.autograd.profiler.record_function('input'):
            if self.z_dim > 0:
                misc.assert_shape(z, [None, self.z_dim])
                x = normalize_2nd_moment(z.to(torch.float32))

            if self.c_dim > 0:
                misc.assert_shape(c, [None, self.c_dim])
                y = normalize_2nd_moment(self.embed(c.to(torch.float32)))
                x = torch.cat([x, y], dim=1) if x is not None else y

        # Main layers.
        for idx in range(self.num_layers):
            layer = getattr(self, f'fc{idx}')
            x = layer(x)

        # Update moving average of W.
        if self.w_avg_beta is not None and self.training and not skip_w_avg_update:
            with torch.autograd.profiler.record_function('update_w_avg'):
                self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))

        # Broadcast.
        if self.num_ws is not None:
            with torch.autograd.profiler.record_function('broadcast'):
                x = x.unsqueeze(1).repeat([1, self.num_ws, 1])

        # Apply truncation.
        if truncation_psi != 1:
            with torch.autograd.profiler.record_function('truncate'):
                assert self.w_avg_beta is not None
                if self.num_ws is None or truncation_cutoff is None:
                    x = self.w_avg.lerp(x, truncation_psi)
                else:
                    x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
        return x

#----------------------------------------------------------------------------

@persistence.persistent_class
class FullyConnectedLayer(torch.nn.Module):
    def __init__(self,
        in_features,                # Number of input features.
        out_features,               # Number of output features.
        bias            = True,     # Apply additive bias before the activation function?
        activation      = 'linear', # Activation function: 'relu', 'lrelu', etc.
        lr_multiplier   = 1,        # Learning rate multiplier.
        bias_init       = 0,        # Initial value for the additive bias.
    ):
        super().__init__()
        self.activation = activation
        self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier)
        self.bias = torch.nn.Parameter(torch.full([out_features], float(bias_init))) if bias else None
        self.weight_gain = lr_multiplier / np.sqrt(in_features)
        self.bias_gain = lr_multiplier

    def forward(self, x):
        w = self.weight.to(x.dtype) * self.weight_gain
        b = self.bias
        if b is not None:
            b = b.to(x.dtype)
            if self.bias_gain != 1:
                b = b * self.bias_gain

        if self.activation == 'linear' and b is not None:
            x = torch.addmm(b.unsqueeze(0), x, w.t())
        else:
            x = x.matmul(w.t())
            x = bias_act.bias_act(x, b, act=self.activation)
        return x

#----------------------------------------------------------------------------

@persistence.persistent_class
class Conv2dLayer(torch.nn.Module):
    def __init__(self,
        in_channels,                    # Number of input channels.
        out_channels,                   # Number of output channels.
        kernel_size,                    # Width and height of the convolution kernel.
        bias            = True,         # Apply additive bias before the activation function?
        activation      = 'linear',     # Activation function: 'relu', 'lrelu', etc.
        up              = 1,            # Integer upsampling factor.
        down            = 1,            # Integer downsampling factor.
        resample_filter = [1,3,3,1],    # Low-pass filter to apply when resampling activations.
        conv_clamp      = None,         # Clamp the output to +-X, None = disable clamping.
        channels_last   = False,        # Expect the input to have memory_format=channels_last?
        trainable       = True,         # Update the weights of this layer during training?
        instance_norm   = False,        # Should we apply instance normalization to y?
        lr_multiplier   = 1.0,          # Learning rate multiplier.
    ):
        super().__init__()
        self.activation = activation
        self.up = up
        self.down = down
        self.conv_clamp = conv_clamp
        self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))
        self.padding = kernel_size // 2
        self.weight_gain = 1 / np.sqrt(in_channels * (kernel_size ** 2))
        self.act_gain = bias_act.activation_funcs[activation].def_gain
        self.instance_norm = instance_norm
        self.lr_multiplier = lr_multiplier

        memory_format = torch.channels_last if channels_last else torch.contiguous_format
        weight = torch.randn([out_channels, in_channels, kernel_size, kernel_size]).to(memory_format=memory_format)
        bias = torch.zeros([out_channels]) if bias else None
        if trainable:
            self.weight = torch.nn.Parameter(weight)
            self.bias = torch.nn.Parameter(bias) if bias is not None else None
        else:
            self.register_buffer('weight', weight)
            if bias is not None:
                self.register_buffer('bias', bias)
            else:
                self.bias = None

    def forward(self, x, gain=1):
        w = self.weight * (self.weight_gain * self.lr_multiplier)
        b = (self.bias.to(x.dtype) * self.lr_multiplier) if self.bias is not None else None
        flip_weight = (self.up == 1) # slightly faster
        x = conv2d_resample.conv2d_resample(x=x, w=w.to(x.dtype), f=self.resample_filter, up=self.up, down=self.down, padding=self.padding, flip_weight=flip_weight)

        act_gain = self.act_gain * gain
        act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
        x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp)

        if self.instance_norm:
            x = (x - x.mean(dim=(2,3), keepdim=True)) / (x.std(dim=(2,3), keepdim=True) + 1e-8) # [batch_size, c, h, w]

        return x

#----------------------------------------------------------------------------

@persistence.persistent_class
class GenInput(nn.Module):
    def __init__(self, cfg: DictConfig, channel_dim: int, motion_v_dim: int=None):
        super().__init__()

        self.cfg = cfg

        if self.cfg.input.type == 'const':
            self.input = torch.nn.Parameter(torch.randn([channel_dim, 4, 4]))
            self.total_dim = channel_dim
        elif self.cfg.input.type == 'temporal':
            self.input = TemporalInput(self.cfg, channel_dim, motion_v_dim=motion_v_dim)
            self.total_dim = self.input.get_dim()
        else:
            raise NotImplementedError(f'Unkown input type: {self.cfg.input.type}')

    def forward(self, batch_size: int, motion_v: Optional[torch.Tensor]=None, dtype=None, memory_format=None) -> torch.Tensor:
        if self.cfg.input.type == 'const':
            x = self.input.to(dtype=dtype, memory_format=memory_format)
            x = x.unsqueeze(0).repeat([batch_size, 1, 1, 1])
        elif self.cfg.input.type == 'temporal':
            x = self.input(motion_v=motion_v) # [batch_size, d, h, w]
        else:
            raise NotImplementedError(f'Unkown input type: {self.cfg.input.type}')

        return x

#----------------------------------------------------------------------------

@persistence.persistent_class
class TemporalInput(nn.Module):
    def __init__(self, cfg: DictConfig, channel_dim: int, motion_v_dim: int):
        super().__init__()

        self.cfg = cfg
        self.motion_v_dim = motion_v_dim
        self.const = nn.Parameter(torch.randn(1, channel_dim, 4, 4))

    def get_dim(self):
        return self.motion_v_dim + self.const.shape[1]

    def forward(self, motion_v: torch.Tensor) -> torch.Tensor:
        """
        motion_v: [batch_size, motion_v_dim]
        """
        out = torch.cat([
            self.const.repeat(len(motion_v), 1, 1, 1),
            motion_v.unsqueeze(2).unsqueeze(3).repeat(1, 1, *self.const.shape[2:]),
        ], dim=1) # [batch_size, channel_dim + num_fourier_feats * 2]

        return out

#----------------------------------------------------------------------------

class TemporalDifferenceEncoder(nn.Module):
    def __init__(self, cfg: DictConfig):
        super().__init__()

        self.cfg = cfg

        if self.cfg.sampling.num_frames_per_video > 1:
            self.d = 256
            self.const_embed = nn.Embedding(self.cfg.sampling.max_num_frames, self.d)
            self.time_encoder = FixedTimeEncoder(
                self.cfg.sampling.max_num_frames,
                skip_small_t_freqs=self.cfg.get('skip_small_t_freqs', 0))

    def get_dim(self) -> int:
        if self.cfg.sampling.num_frames_per_video == 1:
            return 1
        else:
            if self.cfg.sampling.type == 'uniform':
                return self.d + self.time_encoder.get_dim()
            else:
                return (self.d + self.time_encoder.get_dim()) * (self.cfg.sampling.num_frames_per_video - 1)

    def forward(self, t: torch.Tensor) -> torch.Tensor:
        misc.assert_shape(t, [None, self.cfg.sampling.num_frames_per_video])

        batch_size = t.shape[0]

        if self.cfg.sampling.num_frames_per_video == 1:
            out = torch.zeros(len(t), 1, device=t.device)
        else:
            if self.cfg.sampling.type == 'uniform':
                num_diffs_to_use = 1
                t_diffs = t[:, 1] - t[:, 0] # [batch_size]
            else:
                num_diffs_to_use = self.cfg.sampling.num_frames_per_video - 1
                t_diffs = (t[:, 1:] - t[:, :-1]).view(-1) # [batch_size * (num_frames - 1)]
            # Note: float => round => long is necessary when it's originally long
            const_embs = self.const_embed(t_diffs.float().round().long()) # [batch_size * num_diffs_to_use, d]
            fourier_embs = self.time_encoder(t_diffs.unsqueeze(1)) # [batch_size * num_diffs_to_use, num_fourier_feats]
            out = torch.cat([const_embs, fourier_embs], dim=1) # [batch_size * num_diffs_to_use, d + num_fourier_feats]
            out = out.view(batch_size, num_diffs_to_use, -1).view(batch_size, -1) # [batch_size, num_diffs_to_use * (d + num_fourier_feats)]

        return out

#----------------------------------------------------------------------------

@persistence.persistent_class
class FixedTimeEncoder(nn.Module):
    def __init__(self,
            max_num_frames: int,            # Maximum T size
            skip_small_t_freqs: int=0,      # How many high frequencies we should skip
        ):
        super().__init__()

        assert max_num_frames >= 1, f"Wrong max_num_frames: {max_num_frames}"
        fourier_coefs = construct_log_spaced_freqs(max_num_frames, skip_small_t_freqs=skip_small_t_freqs)
        self.register_buffer('fourier_coefs', fourier_coefs) # [1, num_fourier_feats]

    def get_dim(self) -> int:
        return self.fourier_coefs.shape[1] * 2

    def forward(self, t: torch.Tensor) -> torch.Tensor:
        assert t.ndim == 2, f"Wrong shape: {t.shape}"

        t = t.view(-1).float() # [batch_size * num_frames]
        fourier_raw_embs = self.fourier_coefs * t.unsqueeze(1) # [bf, num_fourier_feats]

        fourier_embs = torch.cat([
            fourier_raw_embs.sin(),
            fourier_raw_embs.cos(),
        ], dim=1) # [bf, num_fourier_feats * 2]

        return fourier_embs

#----------------------------------------------------------------------------

@persistence.persistent_class
class EqLRConv1d(nn.Module):
    def __init__(self,
        in_features: int,
        out_features: int,
        kernel_size: int,
        padding: int=0,
        stride: int=1,
        activation: str='linear',
        lr_multiplier: float=1.0,
        bias=True,
        bias_init=0.0,
    ):
        super().__init__()

        self.activation = activation
        self.weight = torch.nn.Parameter(torch.randn([out_features, in_features, kernel_size]) / lr_multiplier)
        self.bias = torch.nn.Parameter(torch.full([out_features], float(bias_init))) if bias else None
        self.weight_gain = lr_multiplier / np.sqrt(in_features * kernel_size)
        self.bias_gain = lr_multiplier
        self.padding = padding
        self.stride = stride

        assert self.activation in ['lrelu', 'linear']

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        assert x.ndim == 3, f"Wrong shape: {x.shape}"

        w = self.weight.to(x.dtype) * self.weight_gain # [out_features, in_features, kernel_size]
        b = self.bias # [out_features]
        if b is not None:
            b = b.to(x.dtype)
            if self.bias_gain != 1:
                b = b * self.bias_gain

        y = F.conv1d(input=x, weight=w, bias=b, stride=self.stride, padding=self.padding) # [batch_size, out_features, out_len]
        if self.activation == 'linear':
            pass
        elif self.activation == 'lrelu':
            y = F.leaky_relu(y, negative_slope=0.2) # [batch_size, out_features, out_len]
        else:
            raise NotImplementedError
        return y

#----------------------------------------------------------------------------

def sample_frames(cfg: Dict, total_video_len: int, **kwargs) -> np.ndarray:
    if cfg['type'] == 'random':
        return random_frame_sampling(cfg, total_video_len, **kwargs)
    elif cfg['type'] == 'uniform':
        return uniform_frame_sampling(cfg, total_video_len, **kwargs)
    else:
        raise NotImplementedError

#----------------------------------------------------------------------------

def random_frame_sampling(cfg: Dict, total_video_len: int, use_fractional_t: bool=False) -> np.ndarray:
    min_time_diff = cfg["num_frames_per_video"] - 1
    max_time_diff = min(total_video_len - 1, cfg.get('max_dist', float('inf')))

    if type(cfg.get('total_dists')) in (list, tuple):
        time_diff_range = [d for d in cfg['total_dists'] if min_time_diff <= d <= max_time_diff]
    else:
        time_diff_range = range(min_time_diff, max_time_diff)

    time_diff: int = random.choice(time_diff_range)
    if use_fractional_t:
        offset = random.random() * (total_video_len - time_diff - 1)
    else:
        offset = random.randint(0, total_video_len - time_diff - 1)
    frames_idx = [offset]

    if cfg["num_frames_per_video"] > 1:
        frames_idx.append(offset + time_diff)

    if cfg["num_frames_per_video"] > 2:
        frames_idx.extend([(offset + t) for t in random.sample(range(1, time_diff), k=cfg["num_frames_per_video"] - 2)])

    frames_idx = sorted(frames_idx)

    return np.array(frames_idx)

#----------------------------------------------------------------------------

def uniform_frame_sampling(cfg: Dict, total_video_len: int, use_fractional_t: bool=False) -> np.ndarray:
    # Step 1: Select the distance between frames
    if type(cfg.get('dists_between_frames')) in (list, tuple):
        valid_dists = [d for d in cfg['dists_between_frames'] if d <= ['max_dist_between_frames']]
        valid_dists = [d for d in valid_dists if (d * cfg['num_frames_per_video'] - d + 1) <= total_video_len]
        d = random.choice(valid_dists)
    else:
        max_dist = min(cfg.get('max_dist', float('inf')), total_video_len // cfg['num_frames_per_video'])
        d = random.randint(1, max_dist)

    d_total = d * cfg['num_frames_per_video'] - d + 1

    # Step 2: Sample.
    if use_fractional_t:
        offset = random.random() * (total_video_len - d_total)
    else:
        offset = random.randint(0, total_video_len - d_total)

    frames_idx = offset + np.arange(cfg['num_frames_per_video']) * d

    return frames_idx

#----------------------------------------------------------------------------

def construct_log_spaced_freqs(max_num_frames: int, skip_small_t_freqs: int=0) -> Tuple[int, torch.Tensor]:
    time_resolution = 2 ** np.ceil(np.log2(max_num_frames))
    num_fourier_feats = np.ceil(np.log2(time_resolution)).astype(int)
    powers = torch.tensor([2]).repeat(num_fourier_feats).pow(torch.arange(num_fourier_feats)) # [num_fourier_feats]
    powers = powers[:len(powers) - skip_small_t_freqs] # [num_fourier_feats]
    fourier_coefs = powers.unsqueeze(0).float() * np.pi # [1, num_fourier_feats]

    return fourier_coefs / time_resolution

#----------------------------------------------------------------------------