Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import random | |
import torch.utils.data as data | |
import numpy as np | |
from PIL import Image | |
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG'] | |
def is_image_file(filename): | |
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) | |
class Sky(data.Dataset): | |
def __init__(self, configs, transform, temporal_sample=None, train=True): | |
self.configs = configs | |
self.data_path = configs.data_path | |
self.transform = transform | |
self.temporal_sample = temporal_sample | |
self.target_video_len = self.configs.num_frames | |
self.frame_interval = self.configs.frame_interval | |
self.data_all = self.load_video_frames(self.data_path) | |
def __getitem__(self, index): | |
vframes = self.data_all[index] | |
total_frames = len(vframes) | |
# Sampling video frames | |
start_frame_ind, end_frame_ind = self.temporal_sample(total_frames) | |
assert end_frame_ind - start_frame_ind >= self.target_video_len | |
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, num=self.target_video_len, dtype=int) # start, stop, num=50 | |
select_video_frames = vframes[frame_indice[0]: frame_indice[-1]+1: self.frame_interval] | |
video_frames = [] | |
for path in select_video_frames: | |
video_frame = torch.as_tensor(np.array(Image.open(path), dtype=np.uint8, copy=True)).unsqueeze(0) | |
video_frames.append(video_frame) | |
video_clip = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) | |
video_clip = self.transform(video_clip) | |
return {'video': video_clip, 'video_name': 1} | |
def __len__(self): | |
return self.video_num | |
def load_video_frames(self, dataroot): | |
data_all = [] | |
frame_list = os.walk(dataroot) | |
for _, meta in enumerate(frame_list): | |
root = meta[0] | |
try: | |
frames = sorted(meta[2], key=lambda item: int(item.split('.')[0].split('_')[-1])) | |
except: | |
print(meta[0]) # root | |
print(meta[2]) # files | |
frames = [os.path.join(root, item) for item in frames if is_image_file(item)] | |
if len(frames) > max(0, self.target_video_len * self.frame_interval): # need all > (16 * frame-interval) videos | |
# if len(frames) >= max(0, self.target_video_len): # need all > 16 frames videos | |
data_all.append(frames) | |
self.video_num = len(data_all) | |
return data_all | |
if __name__ == '__main__': | |
import argparse | |
import torchvision | |
import video_transforms | |
import torch.utils.data as data | |
from torchvision import transforms | |
from torchvision.utils import save_image | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--num_frames", type=int, default=16) | |
parser.add_argument("--frame_interval", type=int, default=4) | |
parser.add_argument("--data-path", type=str, default="/path/to/datasets/sky_timelapse/sky_train/") | |
config = parser.parse_args() | |
target_video_len = config.num_frames | |
temporal_sample = video_transforms.TemporalRandomCrop(target_video_len * config.frame_interval) | |
trans = transforms.Compose([ | |
video_transforms.ToTensorVideo(), | |
# video_transforms.CenterCropVideo(256), | |
video_transforms.CenterCropResizeVideo(256), | |
# video_transforms.RandomHorizontalFlipVideo(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) | |
]) | |
taichi_dataset = Sky(config, transform=trans, temporal_sample=temporal_sample) | |
print(len(taichi_dataset)) | |
taichi_dataloader = data.DataLoader(dataset=taichi_dataset, batch_size=1, shuffle=False, num_workers=1) | |
for i, video_data in enumerate(taichi_dataloader): | |
print(video_data['video'].shape) | |
# print(video_data.dtype) | |
# for i in range(target_video_len): | |
# save_image(video_data[0][i], os.path.join('./test_data', '%04d.png' % i), normalize=True, value_range=(-1, 1)) | |
# video_ = ((video_data[0] * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) | |
# torchvision.io.write_video('./test_data' + 'test.mp4', video_, fps=8) | |
# exit() |