# All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ A minimal training script for Latte using PyTorch DDP. """ import torch # Maybe use fp16 percision training need to set to False torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True import os import math import argparse import torch.distributed as dist from glob import glob from time import time from copy import deepcopy from einops import rearrange from models import get_models from datasets import get_dataset from models.clip import TextEmbedder from diffusion import create_diffusion from omegaconf import OmegaConf from torch.utils.data import DataLoader from diffusers.models import AutoencoderKL from diffusers.optimization import get_scheduler from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.data.distributed import DistributedSampler from utils import (clip_grad_norm_, create_logger, update_ema, requires_grad, cleanup, create_tensorboard, write_tensorboard, setup_distributed, get_experiment_dir) ################################################################################# # Training Loop # ################################################################################# def main(args): assert torch.cuda.is_available(), "Training currently requires at least one GPU." # Setup DDP: setup_distributed() rank = int(os.environ["RANK"]) local_rank = int(os.environ["LOCAL_RANK"]) device = torch.device("cuda", local_rank) seed = args.global_seed + rank torch.manual_seed(seed) torch.cuda.set_device(device) print(f"Starting rank={rank}, local rank={local_rank}, seed={seed}, world_size={dist.get_world_size()}.") # Setup an experiment folder: if rank == 0: os.makedirs(args.results_dir, exist_ok=True) # Make results folder (holds all experiment subfolders) experiment_index = len(glob(f"{args.results_dir}/*")) model_string_name = args.model.replace("/", "-") # e.g., Latte-XL/2 --> Latte-XL-2 (for naming folders) num_frame_string = 'F' + str(args.num_frames) + 'S' + str(args.frame_interval) experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}-{num_frame_string}-{args.dataset}" # Create an experiment folder experiment_dir = get_experiment_dir(experiment_dir, args) checkpoint_dir = f"{experiment_dir}/checkpoints" # Stores saved model checkpoints os.makedirs(checkpoint_dir, exist_ok=True) logger = create_logger(experiment_dir) tb_writer = create_tensorboard(experiment_dir) OmegaConf.save(args, os.path.join(experiment_dir, 'config.yaml')) logger.info(f"Experiment directory created at {experiment_dir}") else: logger = create_logger(None) tb_writer = None # Create model: assert args.image_size % 8 == 0, "Image size must be divisible by 8 (for the VAE encoder)." sample_size = args.image_size // 8 args.latent_size = sample_size model = get_models(args) # Note that parameter initialization is done within the Latte constructor ema = deepcopy(model).to(device) # Create an EMA of the model for use after training requires_grad(ema, False) diffusion = create_diffusion(timestep_respacing="") # default: 1000 steps, linear noise schedule # vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema").to(device) vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="sd-vae-ft-mse").to(device) # # use pretrained model? if args.pretrained: checkpoint = torch.load(args.pretrained, map_location=lambda storage, loc: storage) if "ema" in checkpoint: # supports checkpoints from train.py logger.info('Using ema ckpt!') checkpoint = checkpoint["ema"] model_dict = model.state_dict() # 1. filter out unnecessary keys pretrained_dict = {} for k, v in checkpoint.items(): if k in model_dict: pretrained_dict[k] = v else: logger.info('Ignoring: {}'.format(k)) logger.info('Successfully Load {}% original pretrained model weights '.format(len(pretrained_dict) / len(checkpoint.items()) * 100)) # 2. overwrite entries in the existing state dict model_dict.update(pretrained_dict) model.load_state_dict(model_dict) logger.info('Successfully load model at {}!'.format(args.pretrained)) if args.use_compile: model = torch.compile(model) if args.enable_xformers_memory_efficient_attention: logger.info("Using Xformers!") model.enable_xformers_memory_efficient_attention() if args.gradient_checkpointing: logger.info("Using gradient checkpointing!") model.enable_gradient_checkpointing() if args.fixed_spatial: trainable_modules = ( "attn_temp", ) model.requires_grad_(False) for name, module in model.named_modules(): if name.endswith(tuple(trainable_modules)): for params in module.parameters(): logger.info("WARNING: Only train {} parametes!".format(name)) params.requires_grad = True logger.info("WARNING: Only train {} parametes!".format(trainable_modules)) # set distributed training model = DDP(model.to(device), device_ids=[local_rank]) logger.info(f"Model Parameters: {sum(p.numel() for p in model.parameters()):,}") opt = torch.optim.AdamW(model.parameters(), lr=1e-4, weight_decay=0) # Freeze vae and text_encoder vae.requires_grad_(False) # Setup data: dataset = get_dataset(args) sampler = DistributedSampler( dataset, num_replicas=dist.get_world_size(), rank=rank, shuffle=True, seed=args.global_seed ) loader = DataLoader( dataset, batch_size=int(args.local_batch_size), shuffle=False, sampler=sampler, num_workers=args.num_workers, pin_memory=True, drop_last=True ) logger.info(f"Dataset contains {len(dataset):,} videos ({args.webvideo_data_path})") # Scheduler lr_scheduler = get_scheduler( name="constant", optimizer=opt, num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) # Prepare models for training: update_ema(ema, model.module, decay=0) # Ensure EMA is initialized with synced weights model.train() # important! This enables embedding dropout for classifier-free guidance ema.eval() # EMA model should always be in eval mode # Variables for monitoring/logging purposes: train_steps = 0 log_steps = 0 running_loss = 0 first_epoch = 0 start_time = time() # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(loader)) # Afterwards we recalculate our number of training epochs num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: # TODO, need to checkout # Get the most recent checkpoint dirs = os.listdir(os.path.join(experiment_dir, 'checkpoints')) dirs = [d for d in dirs if d.endswith("pt")] dirs = sorted(dirs, key=lambda x: int(x.split(".")[0])) path = dirs[-1] logger.info(f"Resuming from checkpoint {path}") model.load_state(os.path.join(dirs, path)) train_steps = int(path.split(".")[0]) first_epoch = train_steps // num_update_steps_per_epoch resume_step = train_steps % num_update_steps_per_epoch for epoch in range(first_epoch, num_train_epochs): sampler.set_epoch(epoch) for step, video_data in enumerate(loader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: continue x = video_data['video'].to(device, non_blocking=True) video_name = video_data['video_name'] if args.dataset == "ucf101_img": image_name = video_data['image_name'] image_names = [] for caption in image_name: single_caption = [int(item) for item in caption.split('=====')] image_names.append(torch.as_tensor(single_caption)) # x = x.to(device) # y = y.to(device) # y is text prompt; no need put in gpu with torch.no_grad(): # Map input images to latent space + normalize latents: b, _, _, _, _ = x.shape x = rearrange(x, 'b f c h w -> (b f) c h w').contiguous() x = vae.encode(x).latent_dist.sample().mul_(0.18215) x = rearrange(x, '(b f) c h w -> b f c h w', b=b).contiguous() if args.extras == 78: # text-to-video raise 'T2V training are Not supported at this moment!' elif args.extras == 2: if args.dataset == "ucf101_img": model_kwargs = dict(y=video_name, y_image=image_names, use_image_num=args.use_image_num) # tav unet else: model_kwargs = dict(y=video_name) # tav unet else: model_kwargs = dict(y=None, use_image_num=args.use_image_num) t = torch.randint(0, diffusion.num_timesteps, (x.shape[0],), device=device) loss_dict = diffusion.training_losses(model, x, t, model_kwargs) loss = loss_dict["loss"].mean() loss.backward() if train_steps < args.start_clip_iter: # if train_steps >= start_clip_iter, will clip gradient gradient_norm = clip_grad_norm_(model.module.parameters(), args.clip_max_norm, clip_grad=False) else: gradient_norm = clip_grad_norm_(model.module.parameters(), args.clip_max_norm, clip_grad=True) opt.step() lr_scheduler.step() opt.zero_grad() update_ema(ema, model.module) # Log loss values: running_loss += loss.item() log_steps += 1 train_steps += 1 if train_steps % args.log_every == 0: # Measure training speed: torch.cuda.synchronize() end_time = time() steps_per_sec = log_steps / (end_time - start_time) # Reduce loss history over all processes: avg_loss = torch.tensor(running_loss / log_steps, device=device) dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM) avg_loss = avg_loss.item() / dist.get_world_size() # logger.info(f"(step={train_steps:07d}) Train Loss: {avg_loss:.4f}, Train Steps/Sec: {steps_per_sec:.2f}") logger.info(f"(step={train_steps:07d}/epoch={epoch:04d}) Train Loss: {avg_loss:.4f}, Gradient Norm: {gradient_norm:.4f}, Train Steps/Sec: {steps_per_sec:.2f}") write_tensorboard(tb_writer, 'Train Loss', avg_loss, train_steps) write_tensorboard(tb_writer, 'Gradient Norm', gradient_norm, train_steps) # Reset monitoring variables: running_loss = 0 log_steps = 0 start_time = time() # Save Latte checkpoint: if train_steps % args.ckpt_every == 0 and train_steps > 0: if rank == 0: checkpoint = { # "model": model.module.state_dict(), "ema": ema.state_dict(), # "opt": opt.state_dict(), # "args": args } checkpoint_path = f"{checkpoint_dir}/{train_steps:07d}.pt" torch.save(checkpoint, checkpoint_path) logger.info(f"Saved checkpoint to {checkpoint_path}") dist.barrier() model.eval() # important! This disables randomized embedding dropout # do any sampling/FID calculation/etc. with ema (or model) in eval mode ... logger.info("Done!") cleanup() if __name__ == "__main__": # Default args here will train Latte-XL/2 with the hyperparameters we used in our paper (except training iters). parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="./configs/sky/sky_train.yaml") args = parser.parse_args() main(OmegaConf.load(args.config))