import gradio as gr from transformers import AutoModelForVision2Seq, AutoTokenizer, AutoImageProcessor, StoppingCriteria import spaces import torch from PIL import Image models = { "Salesforce/xgen-mm-phi3-mini-instruct-r-v1": AutoModelForVision2Seq.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-r-v1", trust_remote_code=True), "Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5": AutoModelForVision2Seq.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5", trust_remote_code=True), "Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5": AutoModelForVision2Seq.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5", trust_remote_code=True), "Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5": AutoModelForVision2Seq.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5", trust_remote_code=True) } processors = { "Salesforce/xgen-mm-phi3-mini-instruct-r-v1": AutoImageProcessor.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-r-v1", trust_remote_code=True), "Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5": AutoImageProcessor.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5", trust_remote_code=True), "Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5": AutoImageProcessor.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5", trust_remote_code=True), "Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5": AutoImageProcessor.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5", trust_remote_code=True) } tokenizers = { "Salesforce/xgen-mm-phi3-mini-instruct-r-v1": AutoTokenizer.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-r-v1", trust_remote_code=True, use_fast=False, legacy=False), "Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5": AutoTokenizer.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5", trust_remote_code=True, use_fast=False, legacy=False), "Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5": AutoTokenizer.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-singleimg-r-v1.5", trust_remote_code=True, use_fast=False, legacy=False), "Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5": AutoTokenizer.from_pretrained("Salesforce/xgen-mm-phi3-mini-instruct-dpo-r-v1.5", trust_remote_code=True, use_fast=False, legacy=False) } DESCRIPTION = "# [xGen-MM Demo](https://huggingface.co/collections/Salesforce/xgen-mm-1-models-662971d6cecbf3a7f80ecc2e)" def apply_prompt_template(prompt): s = ( '<|system|>\nA chat between a curious user and an artificial intelligence assistant. ' "The assistant gives helpful, detailed, and polite answers to the user's questions.<|end|>\n" f'<|user|>\n\n{prompt}<|end|>\n<|assistant|>\n' ) return s class EosListStoppingCriteria(StoppingCriteria): def __init__(self, eos_sequence = [32007]): self.eos_sequence = eos_sequence def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: last_ids = input_ids[:,-len(self.eos_sequence):].tolist() return self.eos_sequence in last_ids @spaces.GPU def run_example(image, text_input=None, model_id="Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5"): model = models[model_id].to("cuda").eval() processor = processors[model_id] tokenizer = tokenizers[model_id] tokenizer = model.update_special_tokens(tokenizer) if model_id == "Salesforce/xgen-mm-phi3-mini-instruct-r-v1": image = Image.fromarray(image).convert("RGB") prompt = apply_prompt_template(text_input) language_inputs = tokenizer([prompt], return_tensors="pt") inputs = processor([image], return_tensors="pt", image_aspect_ratio='anyres') inputs.update(language_inputs) inputs = {name: tensor.cuda() for name, tensor in inputs.items()} generated_text = model.generate(**inputs, image_size=[image.size], pad_token_id=tokenizer.pad_token_id, do_sample=False, max_new_tokens=768, top_p=None, num_beams=1, stopping_criteria = [EosListStoppingCriteria()], ) else: image_list = [] image_sizes = [] img = Image.fromarray(image).convert("RGB") image_list.append(processor([img], image_aspect_ratio='anyres')["pixel_values"].cuda()) image_sizes.append(img.size) inputs = { "pixel_values": [image_list] } prompt = apply_prompt_template(text_input) language_inputs = tokenizer([prompt], return_tensors="pt") inputs.update(language_inputs) for name, value in inputs.items(): if isinstance(value, torch.Tensor): inputs[name] = value.cuda() generated_text = model.generate(**inputs, image_size=[image_sizes], pad_token_id=tokenizer.pad_token_id, do_sample=False, max_new_tokens=1024, top_p=None, num_beams=1, ) prediction = tokenizer.decode(generated_text[0], skip_special_tokens=True).split("<|end|>")[0] return prediction css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="xGen-MM Input"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture") model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Salesforce/xgen-mm-phi3-mini-instruct-interleave-r-v1.5") text_input = gr.Textbox(label="Question") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text]) demo.launch(debug=True)