File size: 10,745 Bytes
10f957b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24b656
 
755994c
10f957b
 
 
 
 
 
755994c
 
10f957b
 
 
 
 
 
 
 
 
 
755994c
10f957b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755994c
 
 
 
10f957b
 
 
 
 
755994c
 
10f957b
 
 
 
 
755994c
10f957b
 
 
 
755994c
c24b656
755994c
 
10f957b
 
 
755994c
10f957b
 
 
 
 
 
 
 
 
755994c
10f957b
 
 
 
 
 
 
 
 
 
 
755994c
10f957b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755994c
 
10f957b
 
755994c
10f957b
755994c
10f957b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755994c
 
 
 
10f957b
 
755994c
10f957b
 
 
 
 
 
 
 
 
 
 
755994c
10f957b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24b656
 
10f957b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import numpy as np
import random
import torch
import torch.utils.data


from vits.utils import load_wav_to_torch


def load_filepaths(filename, split="|"):
    with open(filename, encoding='utf-8') as f:
        filepaths = [line.strip().split(split) for line in f]
    return filepaths


class TextAudioSpeakerSet(torch.utils.data.Dataset):
    def __init__(self, filename, hparams):
        self.items = load_filepaths(filename)
        self.max_wav_value = hparams.max_wav_value
        self.sampling_rate = hparams.sampling_rate
        self.segment_size = hparams.segment_size
        self.hop_length = hparams.hop_length
        self._filter()
        print(f'----------{len(self.items)}----------')

    def _filter(self):
        lengths = []
        items_new = []
        items_min = int(self.segment_size / self.hop_length * 4)  # 1 S
        items_max = int(self.segment_size / self.hop_length * 16)  # 4 S
        for wavpath, spec, pitch, vec, ppg, spk in self.items:
            if not os.path.isfile(wavpath):
                continue
            if not os.path.isfile(spec):
                continue
            if not os.path.isfile(pitch):
                continue
            if not os.path.isfile(vec):
                continue
            if not os.path.isfile(ppg):
                continue
            if not os.path.isfile(spk):
                continue
            temp = np.load(pitch)
            usel = int(temp.shape[0] - 1)  # useful length
            if (usel < items_min):
                continue
            if (usel >= items_max):
                usel = items_max
            items_new.append([wavpath, spec, pitch, vec, ppg, spk, usel])
            lengths.append(usel)
        self.items = items_new
        self.lengths = lengths

    def read_wav(self, filename):
        audio, sampling_rate = load_wav_to_torch(filename)
        assert sampling_rate == self.sampling_rate, f"error: this sample rate of {filename} is {sampling_rate}"
        audio_norm = audio / self.max_wav_value
        audio_norm = audio_norm.unsqueeze(0)
        return audio_norm

    def __getitem__(self, index):
        return self.my_getitem(index)

    def __len__(self):
        return len(self.items)

    def my_getitem(self, idx):
        item = self.items[idx]
        # print(item)
        wav = item[0]
        spe = item[1]
        pit = item[2]
        vec = item[3]
        ppg = item[4]
        spk = item[5]
        use = item[6]

        wav = self.read_wav(wav)
        spe = torch.load(spe)

        pit = np.load(pit)
        vec = np.load(vec)
        vec = np.repeat(vec, 2, 0)  # 320 PPG -> 160 * 2
        ppg = np.load(ppg)
        ppg = np.repeat(ppg, 2, 0)  # 320 PPG -> 160 * 2
        spk = np.load(spk)

        pit = torch.FloatTensor(pit)
        vec = torch.FloatTensor(vec)
        ppg = torch.FloatTensor(ppg)
        spk = torch.FloatTensor(spk)

        len_pit = pit.size()[0]
        len_vec = vec.size()[0] - 2 # for safe
        len_ppg = ppg.size()[0] - 2 # for safe
        len_min = min(len_pit, len_vec)
        len_min = min(len_min, len_ppg)
        len_wav = len_min * self.hop_length

        pit = pit[:len_min]
        vec = vec[:len_min, :]
        ppg = ppg[:len_min, :]
        spe = spe[:, :len_min]
        wav = wav[:, :len_wav]
        if len_min > use:
            max_frame_start = ppg.size(0) - use - 1
            frame_start = random.randint(0, max_frame_start)
            frame_end = frame_start + use

            pit = pit[frame_start:frame_end]
            vec = vec[frame_start:frame_end, :]
            ppg = ppg[frame_start:frame_end, :]
            spe = spe[:, frame_start:frame_end]

            wav_start = frame_start * self.hop_length
            wav_end = frame_end * self.hop_length
            wav = wav[:, wav_start:wav_end]
        # print(spe.shape)
        # print(wav.shape)
        # print(ppg.shape)
        # print(pit.shape)
        # print(spk.shape)
        return spe, wav, ppg, vec, pit, spk


class TextAudioSpeakerCollate:
    """Zero-pads model inputs and targets"""

    def __call__(self, batch):
        # Right zero-pad all one-hot text sequences to max input length
        # mel: [freq, length]
        # wav: [1, length]
        # ppg: [len, 1024]
        # pit: [len]
        # spk: [256]
        _, ids_sorted_decreasing = torch.sort(
            torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
        )

        max_spe_len = max([x[0].size(1) for x in batch])
        max_wav_len = max([x[1].size(1) for x in batch])
        spe_lengths = torch.LongTensor(len(batch))
        wav_lengths = torch.LongTensor(len(batch))
        spe_padded = torch.FloatTensor(
            len(batch), batch[0][0].size(0), max_spe_len)
        wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
        spe_padded.zero_()
        wav_padded.zero_()

        max_ppg_len = max([x[2].size(0) for x in batch])
        ppg_lengths = torch.FloatTensor(len(batch))
        ppg_padded = torch.FloatTensor(
            len(batch), max_ppg_len, batch[0][2].size(1))
        vec_padded = torch.FloatTensor(
            len(batch), max_ppg_len, batch[0][3].size(1))
        pit_padded = torch.FloatTensor(len(batch), max_ppg_len)
        ppg_padded.zero_()
        vec_padded.zero_()
        pit_padded.zero_()
        spk = torch.FloatTensor(len(batch), batch[0][5].size(0))

        for i in range(len(ids_sorted_decreasing)):
            row = batch[ids_sorted_decreasing[i]]

            spe = row[0]
            spe_padded[i, :, : spe.size(1)] = spe
            spe_lengths[i] = spe.size(1)

            wav = row[1]
            wav_padded[i, :, : wav.size(1)] = wav
            wav_lengths[i] = wav.size(1)

            ppg = row[2]
            ppg_padded[i, : ppg.size(0), :] = ppg
            ppg_lengths[i] = ppg.size(0)

            vec = row[3]
            vec_padded[i, : vec.size(0), :] = vec

            pit = row[4]
            pit_padded[i, : pit.size(0)] = pit

            spk[i] = row[5]
        # print(ppg_padded.shape)
        # print(ppg_lengths.shape)
        # print(pit_padded.shape)
        # print(spk.shape)
        # print(spe_padded.shape)
        # print(spe_lengths.shape)
        # print(wav_padded.shape)
        # print(wav_lengths.shape)
        return (
            ppg_padded,
            ppg_lengths,
            vec_padded,
            pit_padded,
            spk,
            spe_padded,
            spe_lengths,
            wav_padded,
            wav_lengths,
        )


class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
    """
    Maintain similar input lengths in a batch.
    Length groups are specified by boundaries.
    Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
    It removes samples which are not included in the boundaries.
    Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
    """

    def __init__(
        self,
        dataset,
        batch_size,
        boundaries,
        num_replicas=None,
        rank=None,
        shuffle=True,
    ):
        super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
        self.lengths = dataset.lengths
        self.batch_size = batch_size
        self.boundaries = boundaries

        self.buckets, self.num_samples_per_bucket = self._create_buckets()
        self.total_size = sum(self.num_samples_per_bucket)
        self.num_samples = self.total_size // self.num_replicas

    def _create_buckets(self):
        buckets = [[] for _ in range(len(self.boundaries) - 1)]
        for i in range(len(self.lengths)):
            length = self.lengths[i]
            idx_bucket = self._bisect(length)
            if idx_bucket != -1:
                buckets[idx_bucket].append(i)

        for i in range(len(buckets) - 1, 0, -1):
            if len(buckets[i]) == 0:
                buckets.pop(i)
                self.boundaries.pop(i + 1)

        num_samples_per_bucket = []
        for i in range(len(buckets)):
            len_bucket = len(buckets[i])
            total_batch_size = self.num_replicas * self.batch_size
            rem = (
                total_batch_size - (len_bucket % total_batch_size)
            ) % total_batch_size
            num_samples_per_bucket.append(len_bucket + rem)
        return buckets, num_samples_per_bucket

    def __iter__(self):
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)

        indices = []
        if self.shuffle:
            for bucket in self.buckets:
                indices.append(torch.randperm(
                    len(bucket), generator=g).tolist())
        else:
            for bucket in self.buckets:
                indices.append(list(range(len(bucket))))

        batches = []
        for i in range(len(self.buckets)):
            bucket = self.buckets[i]
            len_bucket = len(bucket)
            if (len_bucket == 0):
                continue
            ids_bucket = indices[i]
            num_samples_bucket = self.num_samples_per_bucket[i]

            # add extra samples to make it evenly divisible
            rem = num_samples_bucket - len_bucket
            ids_bucket = (
                ids_bucket
                + ids_bucket * (rem // len_bucket)
                + ids_bucket[: (rem % len_bucket)]
            )

            # subsample
            ids_bucket = ids_bucket[self.rank:: self.num_replicas]

            # batching
            for j in range(len(ids_bucket) // self.batch_size):
                batch = [
                    bucket[idx]
                    for idx in ids_bucket[
                        j * self.batch_size: (j + 1) * self.batch_size
                    ]
                ]
                batches.append(batch)

        if self.shuffle:
            batch_ids = torch.randperm(len(batches), generator=g).tolist()
            batches = [batches[i] for i in batch_ids]
        self.batches = batches

        assert len(self.batches) * self.batch_size == self.num_samples
        return iter(self.batches)

    def _bisect(self, x, lo=0, hi=None):
        if hi is None:
            hi = len(self.boundaries) - 1

        if hi > lo:
            mid = (hi + lo) // 2
            if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
                return mid
            elif x <= self.boundaries[mid]:
                return self._bisect(x, lo, mid)
            else:
                return self._bisect(x, mid + 1, hi)
        else:
            return -1

    def __len__(self):
        return self.num_samples // self.batch_size