sovits5.0 / vits_decoder /generator.py
maxmax20160403's picture
final ver
c24b656
raw
history blame
7.16 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.nn import Conv1d
from torch.nn import ConvTranspose1d
from torch.nn.utils import weight_norm
from torch.nn.utils import remove_weight_norm
from .nsf import SourceModuleHnNSF
from .bigv import init_weights, AMPBlock, SnakeAlias
class SpeakerAdapter(nn.Module):
def __init__(self,
speaker_dim,
adapter_dim,
epsilon=1e-5
):
super(SpeakerAdapter, self).__init__()
self.speaker_dim = speaker_dim
self.adapter_dim = adapter_dim
self.epsilon = epsilon
self.W_scale = nn.Linear(self.speaker_dim, self.adapter_dim)
self.W_bias = nn.Linear(self.speaker_dim, self.adapter_dim)
self.reset_parameters()
def reset_parameters(self):
torch.nn.init.constant_(self.W_scale.weight, 0.0)
torch.nn.init.constant_(self.W_scale.bias, 1.0)
torch.nn.init.constant_(self.W_bias.weight, 0.0)
torch.nn.init.constant_(self.W_bias.bias, 0.0)
def forward(self, x, speaker_embedding):
x = x.transpose(1, -1)
mean = x.mean(dim=-1, keepdim=True)
var = ((x - mean) ** 2).mean(dim=-1, keepdim=True)
std = (var + self.epsilon).sqrt()
y = (x - mean) / std
scale = self.W_scale(speaker_embedding)
bias = self.W_bias(speaker_embedding)
y *= scale.unsqueeze(1)
y += bias.unsqueeze(1)
y = y.transpose(1, -1)
return y
class Generator(torch.nn.Module):
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
def __init__(self, hp):
super(Generator, self).__init__()
self.hp = hp
self.num_kernels = len(hp.gen.resblock_kernel_sizes)
self.num_upsamples = len(hp.gen.upsample_rates)
# speaker adaper, 256 should change by what speaker encoder you use
self.adapter = SpeakerAdapter(hp.vits.spk_dim, hp.gen.upsample_input)
# pre conv
self.conv_pre = Conv1d(hp.gen.upsample_input,
hp.gen.upsample_initial_channel, 7, 1, padding=3)
# nsf
self.f0_upsamp = torch.nn.Upsample(
scale_factor=np.prod(hp.gen.upsample_rates))
self.m_source = SourceModuleHnNSF(sampling_rate=hp.data.sampling_rate)
self.noise_convs = nn.ModuleList()
# transposed conv-based upsamplers. does not apply anti-aliasing
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(hp.gen.upsample_rates, hp.gen.upsample_kernel_sizes)):
# print(f'ups: {i} {k}, {u}, {(k - u) // 2}')
# base
self.ups.append(
weight_norm(
ConvTranspose1d(
hp.gen.upsample_initial_channel // (2 ** i),
hp.gen.upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2)
)
)
# nsf
if i + 1 < len(hp.gen.upsample_rates):
stride_f0 = np.prod(hp.gen.upsample_rates[i + 1:])
stride_f0 = int(stride_f0)
self.noise_convs.append(
Conv1d(
1,
hp.gen.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=stride_f0 * 2,
stride=stride_f0,
padding=stride_f0 // 2,
)
)
else:
self.noise_convs.append(
Conv1d(1, hp.gen.upsample_initial_channel //
(2 ** (i + 1)), kernel_size=1)
)
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = hp.gen.upsample_initial_channel // (2 ** (i + 1))
for k, d in zip(hp.gen.resblock_kernel_sizes, hp.gen.resblock_dilation_sizes):
self.resblocks.append(AMPBlock(ch, k, d))
# post conv
self.activation_post = SnakeAlias(ch)
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
# weight initialization
self.ups.apply(init_weights)
def forward(self, spk, x, f0):
# Perturbation
x = x + torch.randn_like(x)
# adapter
x = self.adapter(x, spk)
x = self.conv_pre(x)
x = x * torch.tanh(F.softplus(x))
# nsf
f0 = f0[:, None]
f0 = self.f0_upsamp(f0).transpose(1, 2)
har_source = self.m_source(f0)
har_source = har_source.transpose(1, 2)
for i in range(self.num_upsamples):
# upsampling
x = self.ups[i](x)
# nsf
x_source = self.noise_convs[i](har_source)
x = x + x_source
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# post conv
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
def eval(self, inference=False):
super(Generator, self).eval()
# don't remove weight norm while validation in training loop
if inference:
self.remove_weight_norm()
def pitch2source(self, f0):
f0 = f0[:, None]
f0 = self.f0_upsamp(f0).transpose(1, 2) # [1,len,1]
har_source = self.m_source(f0)
har_source = har_source.transpose(1, 2) # [1,1,len]
return har_source
def source2wav(self, audio):
MAX_WAV_VALUE = 32768.0
audio = audio.squeeze()
audio = MAX_WAV_VALUE * audio
audio = audio.clamp(min=-MAX_WAV_VALUE, max=MAX_WAV_VALUE-1)
audio = audio.short()
return audio.cpu().detach().numpy()
def inference(self, spk, x, har_source):
# adapter
x = self.adapter(x, spk)
x = self.conv_pre(x)
x = x * torch.tanh(F.softplus(x))
for i in range(self.num_upsamples):
# upsampling
x = self.ups[i](x)
# nsf
x_source = self.noise_convs[i](har_source)
x = x + x_source
# AMP blocks
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
# post conv
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x