import streamlit as st import transformers as tf import pandas as pd from overview import NQDOverview from fullreport import NQDFullReport # Function to load and cache models @st.experimental_singleton(show_spinner=False) def load_model(username, prefix, model_name): p = tf.pipeline('text-classification', f'{username}/{prefix}-{model_name}', return_all_scores=True) return p @st.experimental_singleton(show_spinner=False) def load_pickle(f): return pd.read_pickle(f) def get_results(model, c): res = model(c)[0] scores = [r['score'] for r in res] label = max(range(len(scores)), key=lambda i: scores[i]) # label = float(res['label'].split('_')[1]) # scores = res['score'] return {'label': label, 'scores': scores} def run_models(model_names, models, c): results = {} for mn in model_names: results[mn] = get_results(models[mn], c) return results st.title('Assess the *QuAL*ity of your feedback') st.caption( """Medical education *requires* high-quality feedback, but evaluating feedback is difficult and time-consuming. This tool uses NLP/ML to predict a validated feedback quality metric known as the QuAL Score. *Try it for yourself!* """) ### Load models # Specify which models to load USERNAME = 'maxspad' PREFIX = 'nlp-qual' models_to_load = ['qual', 'q1', 'q2i', 'q3i'] n_models = float(len(models_to_load)) models = {} # Show a progress bar while models are downloading, # then hide it when done lc_placeholder = st.empty() loader_container = lc_placeholder.container() loader_container.caption('Loading models... please wait...') pbar = loader_container.progress(0.0) for i, mn in enumerate(models_to_load): pbar.progress((i+1.0) / n_models) models[mn] = load_model(USERNAME, PREFIX, mn) lc_placeholder.empty() ### Load example data examples = load_pickle('test.pkl') ### Process input ex = examples['comment'].sample(1).tolist()[0] try: ex = ex.strip().replace('_x000D_', '').replace('nan', 'blank') except: ex = 'blank' if 'comment' not in st.session_state: st.session_state['comment'] = ex with st.form('comment_form'): comment = st.text_area('Try a comment:', value=st.session_state['comment']) left_col, right_col = st.columns([1,9], gap='medium') submitted = left_col.form_submit_button('Submit') trying_example = right_col.form_submit_button('Try an example!') if submitted: st.session_state['button_clicked'] = 'submit' st.session_state['comment'] = comment st.experimental_rerun() elif trying_example: st.session_state['button_clicked'] = 'example' st.session_state['comment'] = ex st.experimental_rerun() results = run_models(models_to_load, models, st.session_state['comment']) st.write(results) # tab_titles = ['Overview', 'Q1 - Level of Detail', 'Q2 - Suggestion Given', 'Q3 - Suggestion Linked', 'About'] tab_titles = ['Overview', 'Full Report'] tabs = st.tabs(tab_titles) with tabs[0]: overview = NQDOverview(st, results) overview.draw() with tabs[1]: fullrep = NQDFullReport(st, results) fullrep.draw()