|
import torch |
|
import gradio as gr |
|
from PIL import Image |
|
import scipy.io.wavfile as wavfile |
|
|
|
|
|
from transformers import pipeline |
|
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') |
|
|
|
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") |
|
|
|
|
|
|
|
|
|
|
|
|
|
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def generate_audio(text): |
|
|
|
|
|
narrated_text = narrator(text) |
|
|
|
|
|
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], |
|
data=narrated_text["audio"][0]) |
|
|
|
|
|
return "output.wav" |
|
|
|
|
|
def caption_my_image(pil_image): |
|
|
|
semantics = caption_image(pil_image)[0]["generated_text"] |
|
audio = generate_audio(semantics) |
|
|
|
return audio |
|
|
|
|
|
gr.close_all() |
|
|
|
demo = gr.Interface(fn=caption_my_image, |
|
inputs=[gr.Image(label="Select Image", type="pil")], |
|
outputs=[gr.Audio(label="Generated Audio")], |
|
title="@IT AI Enthusiast (https://www.youtube.com/@itaienthusiast/) - Project 8: Image Captioning with AI", |
|
description="THIS APPLICATION WILL BE USED TO CAPTION IMAGES WITH THE HELP OF AI") |
|
|
|
demo.launch() |
|
|