import torch import gradio as gr from PIL import Image import scipy.io.wavfile as wavfile # Use a pipeline as a high-level helper from transformers import pipeline # from phonemizer.backend.espeak.wrapper import EspeakWrapper # _ESPEAK_LIBRARY = '/opt/homebrew/Cellar/espeak/1.48.04_1/lib/libespeak.1.1.48.dylib' #use the Path to the library. # EspeakWrapper.set_library(_ESPEAK_LIBRARY) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") # tts_model_path = "./Model/models--kakao-enterprise--vits-ljs/snapshots/3bcb8321394f671bd948ebf0d086d694dda95464" # narrator = pipeline("text-to-speech", model=tts_model_path) # Load the pretrained weights caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) # model_path = "./Model/models--Salesforce--blip-image-captioning-large/snapshots/2227ac38c9f16105cb0412e7cab4759978a8fd90" # Load the pretrained weights # caption_image = pipeline("image-to-text", model=model_path, device=device) # define the function to generate audio from text def generate_audio(text): # generate the narrated text narrated_text = narrator(text) # save the audio to WAV file wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) # Return the path to the saved output WAV file return "output.wav" def caption_my_image(pil_image): semantics = caption_image(pil_image)[0]["generated_text"] audio = generate_audio(semantics) return audio gr.close_all() demo = gr.Interface(fn=caption_my_image, inputs=[gr.Image(label="Select Image", type="pil")], outputs=[gr.Audio(label="Generated Audio")], title="@IT AI Enthusiast (https://www.youtube.com/@itaienthusiast/) - Project 8: Image Captioning with AI", description="THIS APPLICATION WILL BE USED TO CAPTION IMAGES WITH THE HELP OF AI") demo.launch()