Spaces:
Runtime error
Runtime error
fix one typo of file name
Browse files- utils/tools_gradio.py +193 -0
utils/tools_gradio.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
+
def fast_process(
|
9 |
+
annotations,
|
10 |
+
image,
|
11 |
+
device,
|
12 |
+
scale,
|
13 |
+
better_quality=False,
|
14 |
+
mask_random_color=True,
|
15 |
+
bbox=None,
|
16 |
+
points=None,
|
17 |
+
use_retina=True,
|
18 |
+
withContours=True,
|
19 |
+
):
|
20 |
+
if isinstance(annotations[0], dict):
|
21 |
+
annotations = [annotation["segmentation"] for annotation in annotations]
|
22 |
+
|
23 |
+
original_h = image.height
|
24 |
+
original_w = image.width
|
25 |
+
if better_quality:
|
26 |
+
if isinstance(annotations[0], torch.Tensor):
|
27 |
+
annotations = np.array(annotations.cpu())
|
28 |
+
for i, mask in enumerate(annotations):
|
29 |
+
mask = cv2.morphologyEx(
|
30 |
+
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
|
31 |
+
)
|
32 |
+
annotations[i] = cv2.morphologyEx(
|
33 |
+
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
|
34 |
+
)
|
35 |
+
if device == "cpu":
|
36 |
+
annotations = np.array(annotations)
|
37 |
+
inner_mask = fast_show_mask(
|
38 |
+
annotations,
|
39 |
+
plt.gca(),
|
40 |
+
random_color=mask_random_color,
|
41 |
+
bbox=bbox,
|
42 |
+
retinamask=use_retina,
|
43 |
+
target_height=original_h,
|
44 |
+
target_width=original_w,
|
45 |
+
)
|
46 |
+
else:
|
47 |
+
if isinstance(annotations[0], np.ndarray):
|
48 |
+
annotations = np.array(annotations)
|
49 |
+
annotations = torch.from_numpy(annotations)
|
50 |
+
inner_mask = fast_show_mask_gpu(
|
51 |
+
annotations,
|
52 |
+
plt.gca(),
|
53 |
+
random_color=mask_random_color,
|
54 |
+
bbox=bbox,
|
55 |
+
retinamask=use_retina,
|
56 |
+
target_height=original_h,
|
57 |
+
target_width=original_w,
|
58 |
+
)
|
59 |
+
if isinstance(annotations, torch.Tensor):
|
60 |
+
annotations = annotations.cpu().numpy()
|
61 |
+
|
62 |
+
if withContours:
|
63 |
+
contour_all = []
|
64 |
+
temp = np.zeros((original_h, original_w, 1))
|
65 |
+
for i, mask in enumerate(annotations):
|
66 |
+
if type(mask) == dict:
|
67 |
+
mask = mask["segmentation"]
|
68 |
+
annotation = mask.astype(np.uint8)
|
69 |
+
if use_retina == False:
|
70 |
+
annotation = cv2.resize(
|
71 |
+
annotation,
|
72 |
+
(original_w, original_h),
|
73 |
+
interpolation=cv2.INTER_NEAREST,
|
74 |
+
)
|
75 |
+
contours, _ = cv2.findContours(
|
76 |
+
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
77 |
+
)
|
78 |
+
for contour in contours:
|
79 |
+
contour_all.append(contour)
|
80 |
+
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2 // scale)
|
81 |
+
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
|
82 |
+
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
83 |
+
|
84 |
+
image = image.convert("RGBA")
|
85 |
+
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), "RGBA")
|
86 |
+
image.paste(overlay_inner, (0, 0), overlay_inner)
|
87 |
+
|
88 |
+
if withContours:
|
89 |
+
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), "RGBA")
|
90 |
+
image.paste(overlay_contour, (0, 0), overlay_contour)
|
91 |
+
|
92 |
+
return image
|
93 |
+
|
94 |
+
|
95 |
+
# CPU post process
|
96 |
+
def fast_show_mask(
|
97 |
+
annotation,
|
98 |
+
ax,
|
99 |
+
random_color=False,
|
100 |
+
bbox=None,
|
101 |
+
retinamask=True,
|
102 |
+
target_height=960,
|
103 |
+
target_width=960,
|
104 |
+
):
|
105 |
+
mask_sum = annotation.shape[0]
|
106 |
+
height = annotation.shape[1]
|
107 |
+
weight = annotation.shape[2]
|
108 |
+
# annotation is sorted by area
|
109 |
+
areas = np.sum(annotation, axis=(1, 2))
|
110 |
+
sorted_indices = np.argsort(areas)[::1]
|
111 |
+
annotation = annotation[sorted_indices]
|
112 |
+
|
113 |
+
index = (annotation != 0).argmax(axis=0)
|
114 |
+
if random_color == True:
|
115 |
+
color = np.random.random((mask_sum, 1, 1, 3))
|
116 |
+
else:
|
117 |
+
color = np.ones((mask_sum, 1, 1, 3)) * np.array(
|
118 |
+
[30 / 255, 144 / 255, 255 / 255]
|
119 |
+
)
|
120 |
+
transparency = np.ones((mask_sum, 1, 1, 1)) * 0.6
|
121 |
+
visual = np.concatenate([color, transparency], axis=-1)
|
122 |
+
mask_image = np.expand_dims(annotation, -1) * visual
|
123 |
+
|
124 |
+
mask = np.zeros((height, weight, 4))
|
125 |
+
|
126 |
+
h_indices, w_indices = np.meshgrid(
|
127 |
+
np.arange(height), np.arange(weight), indexing="ij"
|
128 |
+
)
|
129 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
130 |
+
|
131 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
132 |
+
if bbox is not None:
|
133 |
+
x1, y1, x2, y2 = bbox
|
134 |
+
ax.add_patch(
|
135 |
+
plt.Rectangle(
|
136 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
137 |
+
)
|
138 |
+
)
|
139 |
+
|
140 |
+
if retinamask == False:
|
141 |
+
mask = cv2.resize(
|
142 |
+
mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
143 |
+
)
|
144 |
+
|
145 |
+
return mask
|
146 |
+
|
147 |
+
|
148 |
+
def fast_show_mask_gpu(
|
149 |
+
annotation,
|
150 |
+
ax,
|
151 |
+
random_color=False,
|
152 |
+
bbox=None,
|
153 |
+
retinamask=True,
|
154 |
+
target_height=960,
|
155 |
+
target_width=960,
|
156 |
+
):
|
157 |
+
device = annotation.device
|
158 |
+
mask_sum = annotation.shape[0]
|
159 |
+
height = annotation.shape[1]
|
160 |
+
weight = annotation.shape[2]
|
161 |
+
areas = torch.sum(annotation, dim=(1, 2))
|
162 |
+
sorted_indices = torch.argsort(areas, descending=False)
|
163 |
+
annotation = annotation[sorted_indices]
|
164 |
+
# find the first non-zero subscript for each position
|
165 |
+
index = (annotation != 0).to(torch.long).argmax(dim=0)
|
166 |
+
if random_color == True:
|
167 |
+
color = torch.rand((mask_sum, 1, 1, 3)).to(device)
|
168 |
+
else:
|
169 |
+
color = torch.ones((mask_sum, 1, 1, 3)).to(device) * torch.tensor(
|
170 |
+
[30 / 255, 144 / 255, 255 / 255]
|
171 |
+
).to(device)
|
172 |
+
transparency = torch.ones((mask_sum, 1, 1, 1)).to(device) * 0.6
|
173 |
+
visual = torch.cat([color, transparency], dim=-1)
|
174 |
+
mask_image = torch.unsqueeze(annotation, -1) * visual
|
175 |
+
# index
|
176 |
+
mask = torch.zeros((height, weight, 4)).to(device)
|
177 |
+
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
178 |
+
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
179 |
+
# make updates based on indices
|
180 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
181 |
+
mask_cpu = mask.cpu().numpy()
|
182 |
+
if bbox is not None:
|
183 |
+
x1, y1, x2, y2 = bbox
|
184 |
+
ax.add_patch(
|
185 |
+
plt.Rectangle(
|
186 |
+
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
|
187 |
+
)
|
188 |
+
)
|
189 |
+
if retinamask == False:
|
190 |
+
mask_cpu = cv2.resize(
|
191 |
+
mask_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
|
192 |
+
)
|
193 |
+
return mask_cpu
|