File size: 9,540 Bytes
7dd7200 55e5875 549e159 7f3872e 7dd7200 3eb3e50 c326419 069aba2 b61f4ed 3eb3e50 46d5b00 c93907e 7e4032f c93907e 7514808 3eb3e50 069aba2 2a969d1 069aba2 2a969d1 069aba2 3eb3e50 7e4032f c93907e 3eb3e50 c93907e 46d5b00 5fe15c0 7e4032f 7dd7200 55e5875 7dd7200 b61f4ed 2c135a0 3eb3e50 c326419 3eb3e50 7e4032f 2c135a0 b61f4ed 2c135a0 3eb3e50 2c135a0 3eb3e50 c326419 3eb3e50 7dd7200 3eb3e50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import asyncio
import datetime
import logging
import os
import time
import traceback
import tempfile
from concurrent.futures import ThreadPoolExecutor
from torch.nn.utils.parametrizations import weight_norm
from scipy.io import wavfile
import numpy as np
import traceback
import librosa
import torch
from fairseq import checkpoint_utils
import uuid
from config import Config
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC
model_cache = {}
logger = logging.getLogger('voice_processing')
def load_model(model_name):
"""
Loads an RVC model with proper error handling and logging.
Args:
model_name (str): Name of the model to load (e.g., 'mongolian7-male')
Returns:
tuple: (model, config) or None if loading fails
"""
try:
logger.info(f"Loading model: {model_name}")
# Construct model path
model_dir = "weights"
model_path = os.path.join(model_dir, model_name)
# Find .pth file
pth_files = [f for f in os.listdir(model_path) if f.endswith('.pth')]
if not pth_files:
logger.error(f"No .pth file found in {model_path}")
return None
pth_path = os.path.join(model_path, pth_files[0])
logger.info(f"Found model file: {pth_path}")
# Load model weights
cpt = torch.load(pth_path, map_location="cpu", weights_only=True)
logger.info("Model weights loaded successfully")
# Get configuration
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
logger.info(f"Model config: sr={tgt_sr}, if_f0={if_f0}, version={version}")
# Initialize model based on version
if version == "v1":
from lib.infer_pack.models import SynthesizerTrnMs256NSFsid
model = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=False)
else:
from lib.infer_pack.models import SynthesizerTrnMs768NSFsid
model = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=False)
# Load weights and prepare model
model.eval()
model.load_state_dict(cpt["weight"], strict=False)
logger.info("Model initialized successfully")
return model
except Exception as e:
logger.error(f"Error loading model {model_name}: {str(e)}")
logger.error(traceback.format_exc())
return None
def process_audio(model, audio_file, logger, index_rate=0, use_uploaded_voice=True, uploaded_voice=None):
"""Process audio through the model"""
try:
logger.info("Starting audio processing")
if model is None:
logger.error("No model provided for processing")
return None
# Load audio
sr, audio = wavfile.read(audio_file)
logger.info(f"Loaded audio: sr={sr}Hz, shape={audio.shape}")
# Convert to mono if needed
if len(audio.shape) > 1:
audio = np.mean(audio, axis=1)
audio = audio.astype(np.float32)
# Prepare input tensor
input_tensor = torch.FloatTensor(audio)
if torch.cuda.is_available():
input_tensor = input_tensor.cuda()
model = model.cuda()
# Process through model
with torch.no_grad():
# Prepare required arguments for model.infer()
phone = input_tensor.unsqueeze(0) # Add batch dimension [1, sequence_length]
phone_lengths = torch.LongTensor([len(input_tensor)]).to(input_tensor.device)
pitch = torch.zeros(1, len(input_tensor)).to(input_tensor.device) # Default pitch
nsff0 = torch.zeros_like(pitch).to(input_tensor.device)
sid = torch.LongTensor([0]).to(input_tensor.device) # Speaker ID
# Call infer with all required arguments
output = model.infer(
phone=phone,
phone_lengths=phone_lengths,
pitch=pitch,
nsff0=nsff0,
sid=sid
)
if torch.cuda.is_available():
output = output.cpu()
output = output.numpy()
logger.info(f"Processing complete, output shape: {output.shape}")
return (None, None, (sr, output))
except Exception as e:
logger.error(f"Error processing audio: {str(e)}")
logger.error(traceback.format_exc())
return None
# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"
config = Config()
# Edge TTS voices
# tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
# tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"]
# RVC models directory
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()
def get_unique_filename(extension):
return f"{uuid.uuid4()}.{extension}"
def model_data(model_name):
pth_path = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".pth")
][0]
print(f"Loading {pth_path}")
# Updated model loading with weights_only=True to address the deprecation warning
cpt = torch.load(pth_path, map_location="cpu", weights_only=True)
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
else:
raise ValueError("Unknown version")
del net_g.enc_q
net_g.load_state_dict(cpt["weight"], strict=False)
print("Model loaded")
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
index_files = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".index")
]
if len(index_files) == 0:
print("No index file found")
index_file = ""
else:
index_file = index_files[0]
print(f"Index file found: {index_file}")
return tgt_sr, net_g, vc, version, index_file, if_f0
def load_hubert():
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
return hubert_model.eval()
def get_model_names():
return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
# Initialize the global models
hubert_model = load_hubert()
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
# voice_mapping = {
# "Mongolian Male": "mn-MN-BataaNeural",
# "Mongolian Female": "mn-MN-YesuiNeural"
# }
# Function to run async functions in a new event loop within a thread
def run_async_in_thread(fn, *args):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(fn(*args))
loop.close()
return result
def parallel_tts(tasks): # Remove any async here
"""Process multiple TTS tasks"""
logger.info(f"Received {len(tasks)} tasks for processing")
results = []
for i, task in enumerate(tasks):
try:
logger.info(f"Processing task {i+1}/{len(tasks)}")
model_name, _, _, slang_rate, use_uploaded_voice, audio_file = task
logger.info(f"Model: {model_name}, Slang rate: {slang_rate}")
model = load_model(model_name)
if model is None:
logger.error(f"Failed to load model {model_name}")
results.append(None)
continue
result = process_audio(
model=model,
audio_file=audio_file,
logger=logger,
index_rate=0,
use_uploaded_voice=use_uploaded_voice,
uploaded_voice=None
)
logger.info(f"Processing completed for task {i+1}")
results.append(result)
except Exception as e:
logger.error(f"Error processing task {i+1}: {str(e)}")
logger.error(traceback.format_exc())
results.append(None)
return results
|