File size: 9,540 Bytes
7dd7200
 
 
 
 
 
 
 
55e5875
549e159
7f3872e
 
7dd7200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3eb3e50
 
c326419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069aba2
b61f4ed
3eb3e50
46d5b00
 
c93907e
 
 
7e4032f
c93907e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7514808
3eb3e50
069aba2
2a969d1
069aba2
 
 
 
 
 
 
2a969d1
069aba2
 
 
 
 
 
3eb3e50
7e4032f
 
c93907e
 
 
 
3eb3e50
c93907e
46d5b00
5fe15c0
7e4032f
7dd7200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55e5875
 
7dd7200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b61f4ed
2c135a0
3eb3e50
 
 
 
 
 
 
 
 
 
c326419
3eb3e50
 
 
 
7e4032f
2c135a0
b61f4ed
 
 
 
 
 
2c135a0
3eb3e50
2c135a0
3eb3e50
 
 
c326419
 
3eb3e50
 
7dd7200
3eb3e50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import asyncio
import datetime
import logging
import os
import time
import traceback
import tempfile
from concurrent.futures import ThreadPoolExecutor
from torch.nn.utils.parametrizations import weight_norm
from scipy.io import wavfile
import numpy as np
import traceback
import librosa
import torch
from fairseq import checkpoint_utils
import uuid

from config import Config
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC

model_cache = {}

logger = logging.getLogger('voice_processing')

def load_model(model_name):
    """
    Loads an RVC model with proper error handling and logging.
    
    Args:
        model_name (str): Name of the model to load (e.g., 'mongolian7-male')
        
    Returns:
        tuple: (model, config) or None if loading fails
    """
    try:
        logger.info(f"Loading model: {model_name}")
        
        # Construct model path
        model_dir = "weights"
        model_path = os.path.join(model_dir, model_name)
        
        # Find .pth file
        pth_files = [f for f in os.listdir(model_path) if f.endswith('.pth')]
        if not pth_files:
            logger.error(f"No .pth file found in {model_path}")
            return None
            
        pth_path = os.path.join(model_path, pth_files[0])
        logger.info(f"Found model file: {pth_path}")
        
        # Load model weights
        cpt = torch.load(pth_path, map_location="cpu", weights_only=True)
        logger.info("Model weights loaded successfully")
        
        # Get configuration
        tgt_sr = cpt["config"][-1]
        cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
        if_f0 = cpt.get("f0", 1)
        version = cpt.get("version", "v1")
        
        logger.info(f"Model config: sr={tgt_sr}, if_f0={if_f0}, version={version}")
        
        # Initialize model based on version
        if version == "v1":
            from lib.infer_pack.models import SynthesizerTrnMs256NSFsid
            model = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=False)
        else:
            from lib.infer_pack.models import SynthesizerTrnMs768NSFsid
            model = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=False)
        
        # Load weights and prepare model
        model.eval()
        model.load_state_dict(cpt["weight"], strict=False)
        
        logger.info("Model initialized successfully")
        return model
        
    except Exception as e:
        logger.error(f"Error loading model {model_name}: {str(e)}")
        logger.error(traceback.format_exc())
        return None

def process_audio(model, audio_file, logger, index_rate=0, use_uploaded_voice=True, uploaded_voice=None):
    """Process audio through the model"""
    try:
        logger.info("Starting audio processing")
        
        if model is None:
            logger.error("No model provided for processing")
            return None
            
        # Load audio
        sr, audio = wavfile.read(audio_file)
        logger.info(f"Loaded audio: sr={sr}Hz, shape={audio.shape}")
        
        # Convert to mono if needed
        if len(audio.shape) > 1:
            audio = np.mean(audio, axis=1)
        audio = audio.astype(np.float32)
        
        # Prepare input tensor
        input_tensor = torch.FloatTensor(audio)
        if torch.cuda.is_available():
            input_tensor = input_tensor.cuda()
            model = model.cuda()
        
        # Process through model
        with torch.no_grad():
            # Prepare required arguments for model.infer()
            phone = input_tensor.unsqueeze(0)  # Add batch dimension [1, sequence_length]
            phone_lengths = torch.LongTensor([len(input_tensor)]).to(input_tensor.device)
            pitch = torch.zeros(1, len(input_tensor)).to(input_tensor.device)  # Default pitch
            nsff0 = torch.zeros_like(pitch).to(input_tensor.device)
            sid = torch.LongTensor([0]).to(input_tensor.device)  # Speaker ID
            
            # Call infer with all required arguments
            output = model.infer(
                phone=phone,
                phone_lengths=phone_lengths,
                pitch=pitch,
                nsff0=nsff0,
                sid=sid
            )
            
            if torch.cuda.is_available():
                output = output.cpu()
            output = output.numpy()
        
        logger.info(f"Processing complete, output shape: {output.shape}")
        return (None, None, (sr, output))
        
    except Exception as e:
        logger.error(f"Error processing audio: {str(e)}")
        logger.error(traceback.format_exc())
        return None
        
# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

limitation = os.getenv("SYSTEM") == "spaces"

config = Config()

# Edge TTS voices
# tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
# tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"]

# RVC models directory
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()

def get_unique_filename(extension):
    return f"{uuid.uuid4()}.{extension}"

def model_data(model_name):
    pth_path = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".pth")
    ][0]
    print(f"Loading {pth_path}")
    # Updated model loading with weights_only=True to address the deprecation warning
    cpt = torch.load(pth_path, map_location="cpu", weights_only=True)
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    else:
        raise ValueError("Unknown version")
    del net_g.enc_q
    net_g.load_state_dict(cpt["weight"], strict=False)
    print("Model loaded")
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)

    index_files = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".index")
    ]
    if len(index_files) == 0:
        print("No index file found")
        index_file = ""
    else:
        index_file = index_files[0]
        print(f"Index file found: {index_file}")

    return tgt_sr, net_g, vc, version, index_file, if_f0

def load_hubert():
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    return hubert_model.eval()

def get_model_names():
    return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]

# Initialize the global models
hubert_model = load_hubert()
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)

# voice_mapping = {
#     "Mongolian Male": "mn-MN-BataaNeural",
#     "Mongolian Female": "mn-MN-YesuiNeural"
# }

# Function to run async functions in a new event loop within a thread
def run_async_in_thread(fn, *args):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    result = loop.run_until_complete(fn(*args))
    loop.close()
    return result

def parallel_tts(tasks):  # Remove any async here
    """Process multiple TTS tasks"""
    logger.info(f"Received {len(tasks)} tasks for processing")
    results = []
    
    for i, task in enumerate(tasks):
        try:
            logger.info(f"Processing task {i+1}/{len(tasks)}")
            
            model_name, _, _, slang_rate, use_uploaded_voice, audio_file = task
            logger.info(f"Model: {model_name}, Slang rate: {slang_rate}")
            
            model = load_model(model_name)
            if model is None:
                logger.error(f"Failed to load model {model_name}")
                results.append(None)
                continue
                
            result = process_audio(
                model=model,
                audio_file=audio_file,
                logger=logger,
                index_rate=0,
                use_uploaded_voice=use_uploaded_voice,
                uploaded_voice=None
            )
            logger.info(f"Processing completed for task {i+1}")
            
            results.append(result)
            
        except Exception as e:
            logger.error(f"Error processing task {i+1}: {str(e)}")
            logger.error(traceback.format_exc())
            results.append(None)
    
    return results