File size: 9,224 Bytes
74aca6d b2c48c3 56fd60f b2c48c3 8972ae5 b2c48c3 0cbbac2 b2c48c3 56fd60f b2c48c3 56fd60f b2c48c3 56fd60f b2c48c3 6f00c3d b2c48c3 56fd60f 31591b2 b2c48c3 56fd60f b2c48c3 56fd60f badea10 f74c20d badea10 56fd60f c3240ca 6f00c3d c3240ca 6f00c3d c3240ca 6f00c3d c3240ca 6f00c3d c3240ca 56fd60f b2c48c3 c3240ca b2c48c3 8ba4d72 e88a126 8ba4d72 e88a126 6f00c3d 9f9d800 e0c5b9e 9f9d800 e0c5b9e 9f9d800 e0c5b9e 9f9d800 e0c5b9e 6f00c3d e0c5b9e 9f9d800 e0c5b9e 4f3f829 e0c5b9e ba883e9 9f9d800 6f00c3d 5efcc28 7d36ff4 45bf8dd ba883e9 45bf8dd ba883e9 5efcc28 9f9d800 45bf8dd 9f9d800 56fd60f 4b4da2c e88a126 25d4354 9f9d800 25d4354 9f9d800 25d4354 9f9d800 25d4354 8ba4d72 25d4354 7ca2cdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import asyncio
import datetime
import logging
import os
import time
import traceback
import tempfile
from concurrent.futures import ThreadPoolExecutor
import base64
import edge_tts
import librosa
import torch
from fairseq import checkpoint_utils
import uuid
from config import Config
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC
# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"
config = Config()
# Edge TTS
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] # Specific voices
# RVC models
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()
def get_voices():
return list(voice_mapping.keys())
def get_model_names():
model_root = "weights" # Adjust this path if your models are stored elsewhere
return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
def get_unique_filename(extension):
return f"{uuid.uuid4()}.{extension}"
def model_data(model_name):
pth_path = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".pth")
][0]
print(f"Loading {pth_path}")
cpt = torch.load(pth_path, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
else:
raise ValueError("Unknown version")
del net_g.enc_q
net_g.load_state_dict(cpt["weight"], strict=False)
print("Model loaded")
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
index_files = [
f"{model_root}/{model_name}/{f}"
for f in os.listdir(f"{model_root}/{model_name}")
if f.endswith(".index")
]
if len(index_files) == 0:
print("No index file found")
index_file = ""
else:
index_file = index_files[0]
print(f"Index file found: {index_file}")
return tgt_sr, net_g, vc, version, index_file, if_f0
def load_hubert():
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
return hubert_model.eval()
# Add this helper function to ensure a new event loop is created if none exists
def run_async_in_thread(fn, *args):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
result = loop.run_until_complete(fn(*args))
loop.close()
return result
def parallel_tts(tasks):
with ThreadPoolExecutor() as executor:
futures = [executor.submit(run_async_in_thread, tts, *task) for task in tasks]
results = [future.result() for future in futures]
return results
async def tts(
model_name,
tts_text,
tts_voice,
index_rate,
use_uploaded_voice,
uploaded_voice,
):
edge_output_filename = get_unique_filename("mp3")
try:
# Default values for parameters
speed = 0
f0_up_key = 0
f0_method = "rmvpe"
protect = 0.33
filter_radius = 3
resample_sr = 0
rms_mix_rate = 0.25
edge_time = 0
if use_uploaded_voice:
if uploaded_voice is None:
raise ValueError("No voice file uploaded.")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_file.write(uploaded_voice)
uploaded_file_path = tmp_file.name
audio, sr = librosa.load(uploaded_file_path, sr=16000, mono=True)
else:
if limitation and len(tts_text) > 12000:
raise ValueError(f"Text characters should be at most 12000 in this huggingface space, but got {len(tts_text)} characters.")
t0 = time.time()
speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
await edge_tts.Communicate(tts_text, tts_voice, rate=speed_str).save(edge_output_filename)
edge_time = time.time() - t0
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)
duration = len(audio) / sr
print(f"Audio duration: {duration}s")
if limitation and duration >= 20000:
raise ValueError(f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.")
f0_up_key = int(f0_up_key)
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)
if f0_method == "rmvpe":
vc.model_rmvpe = rmvpe_model
times = [0, 0, 0]
audio_opt = vc.pipeline(
hubert_model,
net_g,
0,
audio,
edge_output_filename if not use_uploaded_voice else uploaded_file_path,
times,
f0_up_key,
f0_method,
index_file,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
None,
)
if tgt_sr != resample_sr and resample_sr >= 16000:
tgt_sr = resample_sr
info = f"Success. Time: tts: {edge_time:.2f}s, npy: {times[0]:.2f}s, f0: {times[1]:.2f}s, infer: {times[2]:.2f}s"
print(info)
# Convert audio to base64
with open(edge_output_filename, "rb") as audio_file:
audio_base64 = base64.b64encode(audio_file.read()).decode('utf-8')
audio_data_uri = f"data:audio/mp3;base64,{audio_base64}"
return (
info,
audio_data_uri,
(tgt_sr, audio_opt) # Return the target sample rate and audio output
)
except Exception as e:
print(f"Error in TTS task: {str(e)}")
import traceback
traceback.print_exc()
if os.path.exists(edge_output_filename):
os.remove(edge_output_filename)
return (str(e), None, None)
voice_mapping = {
"Mongolian Male": "mn-MN-BataaNeural",
"Mongolian Female": "mn-MN-YesuiNeural"
# Add more mappings as needed
}
hubert_model = load_hubert()
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
# Global semaphore to control concurrency
max_concurrent_tasks = 16 # Adjust based on server capacity
semaphore = asyncio.Semaphore(max_concurrent_tasks)
# Global ThreadPoolExecutor
executor = ThreadPoolExecutor(max_workers=max_concurrent_tasks)
class TTSProcessor:
def __init__(self, config):
self.config = config
self.queue = asyncio.Queue()
self.is_processing = False
async def tts(self, model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice):
task = asyncio.create_task(self._tts_task(model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice))
await self.queue.put(task)
if not self.is_processing:
asyncio.create_task(self._process_queue())
return await task
async def _tts_task(self, model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice):
async with semaphore:
return await tts(model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice)
async def _process_queue(self):
self.is_processing = True
while not self.queue.empty():
task = await self.queue.get()
try:
await task
except asyncio.CancelledError:
print("Task was cancelled")
except Exception as e:
print(f"Task failed with error: {e}")
finally:
self.queue.task_done()
self.is_processing = False
# Initialize the TTSProcessor
tts_processor = TTSProcessor(config)
async def parallel_tts_processor(tasks):
return await asyncio.gather(*(tts_processor.tts(*task) for task in tasks))
async def parallel_tts_wrapper(tasks):
return await parallel_tts_processor(tasks) |