File size: 9,224 Bytes
74aca6d
b2c48c3
 
56fd60f
 
 
b2c48c3
 
8972ae5
 
b2c48c3
 
0cbbac2
b2c48c3
56fd60f
b2c48c3
 
56fd60f
 
 
 
 
 
 
b2c48c3
56fd60f
b2c48c3
6f00c3d
b2c48c3
 
 
 
 
 
 
56fd60f
 
 
31591b2
b2c48c3
 
56fd60f
b2c48c3
 
 
 
56fd60f
badea10
 
 
f74c20d
badea10
 
 
56fd60f
 
 
 
c3240ca
 
 
 
 
6f00c3d
c3240ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f00c3d
c3240ca
 
 
 
 
 
 
 
 
 
 
 
 
6f00c3d
c3240ca
 
 
6f00c3d
c3240ca
 
56fd60f
b2c48c3
c3240ca
 
 
 
 
 
 
 
 
 
 
b2c48c3
8ba4d72
e88a126
 
 
 
 
 
 
8ba4d72
 
 
 
 
 
e88a126
 
 
 
 
 
 
 
6f00c3d
 
9f9d800
 
 
 
 
 
 
 
 
 
e0c5b9e
 
9f9d800
e0c5b9e
 
 
 
 
 
 
9f9d800
e0c5b9e
 
 
9f9d800
 
e0c5b9e
 
 
6f00c3d
e0c5b9e
9f9d800
e0c5b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3f829
e0c5b9e
 
ba883e9
9f9d800
6f00c3d
5efcc28
7d36ff4
 
 
 
 
 
45bf8dd
ba883e9
45bf8dd
 
 
ba883e9
 
5efcc28
 
 
 
9f9d800
45bf8dd
9f9d800
56fd60f
 
 
4b4da2c
e88a126
 
 
 
25d4354
 
9f9d800
 
 
 
 
 
 
25d4354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f9d800
25d4354
 
 
 
 
 
9f9d800
 
 
 
 
 
 
 
25d4354
 
 
 
 
8ba4d72
25d4354
 
7ca2cdc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import asyncio
import datetime
import logging
import os
import time
import traceback
import tempfile
from concurrent.futures import ThreadPoolExecutor
import base64


import edge_tts
import librosa
import torch
from fairseq import checkpoint_utils
import uuid

from config import Config
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC

# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

limitation = os.getenv("SYSTEM") == "spaces"

config = Config()

# Edge TTS
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"]  # Specific voices

# RVC models
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()

def get_voices():
    return list(voice_mapping.keys())

def get_model_names():
    model_root = "weights"  # Adjust this path if your models are stored elsewhere
    return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]

def get_unique_filename(extension):
    return f"{uuid.uuid4()}.{extension}"

def model_data(model_name):
    pth_path = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".pth")
    ][0]
    print(f"Loading {pth_path}")
    cpt = torch.load(pth_path, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    else:
        raise ValueError("Unknown version")
    del net_g.enc_q
    net_g.load_state_dict(cpt["weight"], strict=False)
    print("Model loaded")
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)

    index_files = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".index")
    ]
    if len(index_files) == 0:
        print("No index file found")
        index_file = ""
    else:
        index_file = index_files[0]
        print(f"Index file found: {index_file}")

    return tgt_sr, net_g, vc, version, index_file, if_f0

def load_hubert():
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    return hubert_model.eval()

# Add this helper function to ensure a new event loop is created if none exists
def run_async_in_thread(fn, *args):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    result = loop.run_until_complete(fn(*args))
    loop.close()
    return result

def parallel_tts(tasks):
    with ThreadPoolExecutor() as executor:
        futures = [executor.submit(run_async_in_thread, tts, *task) for task in tasks]
        results = [future.result() for future in futures]
    return results

async def tts(
    model_name,
    tts_text,
    tts_voice,
    index_rate,
    use_uploaded_voice,
    uploaded_voice,
):
    edge_output_filename = get_unique_filename("mp3")
    try:
        # Default values for parameters
        speed = 0
        f0_up_key = 0
        f0_method = "rmvpe"
        protect = 0.33
        filter_radius = 3
        resample_sr = 0
        rms_mix_rate = 0.25
        edge_time = 0

        if use_uploaded_voice:
            if uploaded_voice is None:
                raise ValueError("No voice file uploaded.")
            
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
                tmp_file.write(uploaded_voice)
                uploaded_file_path = tmp_file.name
            audio, sr = librosa.load(uploaded_file_path, sr=16000, mono=True)
        else:
            if limitation and len(tts_text) > 12000:
                raise ValueError(f"Text characters should be at most 12000 in this huggingface space, but got {len(tts_text)} characters.")
            
            t0 = time.time()
            speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
            await edge_tts.Communicate(tts_text, tts_voice, rate=speed_str).save(edge_output_filename)
            edge_time = time.time() - t0
            audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)

        duration = len(audio) / sr
        print(f"Audio duration: {duration}s")
        if limitation and duration >= 20000:
            raise ValueError(f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.")

        f0_up_key = int(f0_up_key)
        tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)

        if f0_method == "rmvpe":
            vc.model_rmvpe = rmvpe_model

        times = [0, 0, 0]
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            0,
            audio,
            edge_output_filename if not use_uploaded_voice else uploaded_file_path,
            times,
            f0_up_key,
            f0_method,
            index_file,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            None,
        )

        if tgt_sr != resample_sr and resample_sr >= 16000:
            tgt_sr = resample_sr
        
        info = f"Success. Time: tts: {edge_time:.2f}s, npy: {times[0]:.2f}s, f0: {times[1]:.2f}s, infer: {times[2]:.2f}s"
        print(info)

        # Convert audio to base64
        with open(edge_output_filename, "rb") as audio_file:
            audio_base64 = base64.b64encode(audio_file.read()).decode('utf-8')

        audio_data_uri = f"data:audio/mp3;base64,{audio_base64}"

        return (
            info,
            audio_data_uri,
            (tgt_sr, audio_opt)  # Return the target sample rate and audio output
        )

    except Exception as e:
        print(f"Error in TTS task: {str(e)}")
        import traceback
        traceback.print_exc()
        if os.path.exists(edge_output_filename):
            os.remove(edge_output_filename)
        return (str(e), None, None)

voice_mapping = {
    "Mongolian Male": "mn-MN-BataaNeural",
    "Mongolian Female": "mn-MN-YesuiNeural"
    # Add more mappings as needed
}

hubert_model = load_hubert()

rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)

# Global semaphore to control concurrency
max_concurrent_tasks = 16  # Adjust based on server capacity
semaphore = asyncio.Semaphore(max_concurrent_tasks)

# Global ThreadPoolExecutor
executor = ThreadPoolExecutor(max_workers=max_concurrent_tasks)

class TTSProcessor:
    def __init__(self, config):
        self.config = config
        self.queue = asyncio.Queue()
        self.is_processing = False

    async def tts(self, model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice):
        task = asyncio.create_task(self._tts_task(model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice))
        await self.queue.put(task)
        
        if not self.is_processing:
            asyncio.create_task(self._process_queue())

        return await task

    async def _tts_task(self, model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice):
        async with semaphore:
            return await tts(model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice)

    async def _process_queue(self):
        self.is_processing = True
        while not self.queue.empty():
            task = await self.queue.get()
            try:
                await task
            except asyncio.CancelledError:
                print("Task was cancelled")
            except Exception as e:
                print(f"Task failed with error: {e}")
            finally:
                self.queue.task_done()
        self.is_processing = False

# Initialize the TTSProcessor
tts_processor = TTSProcessor(config)

async def parallel_tts_processor(tasks):
    return await asyncio.gather(*(tts_processor.tts(*task) for task in tasks))

async def parallel_tts_wrapper(tasks):
    return await parallel_tts_processor(tasks)