File size: 6,637 Bytes
7dd7200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import asyncio
import datetime
import logging
import os
import time
import traceback
import tempfile
from concurrent.futures import ThreadPoolExecutor

# import edge_tts  # Commented out as we're not using Edge TTS
import librosa
import torch
from fairseq import checkpoint_utils
import uuid

from config import Config
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC

model_cache = {}


# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

limitation = os.getenv("SYSTEM") == "spaces"

config = Config()

# Edge TTS voices
# tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
# tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"]

# RVC models directory
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()

def get_unique_filename(extension):
    return f"{uuid.uuid4()}.{extension}"

def model_data(model_name):
    # We will not modify this function to cache models
    pth_path = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".pth")
    ][0]
    print(f"Loading {pth_path}")
    cpt = torch.load(pth_path, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    else:
        raise ValueError("Unknown version")
    del net_g.enc_q
    net_g.load_state_dict(cpt["weight"], strict=False)
    print("Model loaded")
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)

    index_files = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".index")
    ]
    if len(index_files) == 0:
        print("No index file found")
        index_file = ""
    else:
        index_file = index_files[0]
        print(f"Index file found: {index_file}")

    return tgt_sr, net_g, vc, version, index_file, if_f0

def load_hubert():
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    return hubert_model.eval()

def get_model_names():
    return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]

# Initialize the global models
hubert_model = load_hubert()
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)

# voice_mapping = {
#     "Mongolian Male": "mn-MN-BataaNeural",
#     "Mongolian Female": "mn-MN-YesuiNeural"
# }

# Function to run async functions in a new event loop within a thread
def run_async_in_thread(fn, *args):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    result = loop.run_until_complete(fn(*args))
    loop.close()
    return result

def parallel_tts(tasks):
    with ThreadPoolExecutor(max_workers=10) as executor:
        # futures = [executor.submit(run_async_in_thread, tts, *task) for task in tasks]  # Original line
        futures = [executor.submit(run_async_in_thread, process_audio, *task) for task in tasks]  # New line
        results = [future.result() for future in futures]
    return results

# Keep the original tts function but commented out
'''
async def tts(
    model_name,
    tts_text,
    tts_voice,
    index_rate,
    use_uploaded_voice,
    uploaded_voice,
):
    # Original TTS function code here
    ...
'''

# New function for audio processing only
async def process_audio(
    model_name,
    text_placeholder,
    voice_placeholder,
    index_rate,
    use_uploaded_voice,
    uploaded_voice,
):
    # Default values for parameters
    f0_up_key = 0
    f0_method = "rmvpe"
    protect = 0.33
    filter_radius = 3
    resample_sr = 0
    rms_mix_rate = 0.25

    try:
        if uploaded_voice is None:
            return "No voice file uploaded.", None, None
        
        # Process the uploaded voice file - read the file instead of writing it
        audio, sr = librosa.load(uploaded_voice, sr=16000, mono=True)  # Load directly from filepath

        duration = len(audio) / sr
        print(f"Audio duration: {duration}s")
        if limitation and duration >= 20000:
            return (
                f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.",
                None,
                None,
            )

        # Load the model and process audio
        tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)

        if f0_method == "rmvpe":
            vc.model_rmvpe = rmvpe_model

        times = [0, 0, 0]
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            0,
            audio,
            uploaded_voice,  # Use the filepath directly
            times,
            f0_up_key,
            f0_method,
            index_file,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            None,
        )

        if tgt_sr != resample_sr and resample_sr >= 16000:
            tgt_sr = resample_sr
        
        info = f"Success. Time: npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
        print(info)
        return (
            info,
            None,   
            (tgt_sr, audio_opt),
        )

    except Exception as e:
        traceback_info = traceback.format_exc()
        print(traceback_info)
        return str(e), None, None