File size: 7,853 Bytes
74aca6d
b2c48c3
 
56fd60f
 
 
b2c48c3
 
 
 
0cbbac2
b2c48c3
56fd60f
b2c48c3
 
56fd60f
 
 
 
 
 
 
b2c48c3
56fd60f
b2c48c3
1d94066
 
 
6f00c3d
b2c48c3
 
 
 
 
 
 
56fd60f
 
 
b2461b4
1d94066
 
56fd60f
b2461b4
b2c48c3
 
 
56fd60f
 
 
 
 
1d94066
c3240ca
 
 
 
 
6f00c3d
1d94066
c3240ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f00c3d
c3240ca
 
 
 
 
 
 
 
 
 
 
 
 
6f00c3d
c3240ca
 
 
6f00c3d
c3240ca
1d94066
56fd60f
b2c48c3
1d94066
 
 
 
 
 
 
 
 
 
 
b2c48c3
58f1964
 
 
1d94066
 
 
e88a126
1d94066
 
 
 
 
 
d87f168
 
 
 
 
 
 
8ba4d72
1d94066
6e3bcee
1d94066
 
8ba4d72
 
e88a126
 
 
 
 
 
 
 
b2461b4
58f1964
 
 
 
 
 
 
 
 
6f00c3d
9f9d800
58f1964
e0c5b9e
 
58f1964
e0c5b9e
58f1964
e0c5b9e
 
 
58f1964
e0c5b9e
 
58f1964
e0c5b9e
58f1964
1d94066
58f1964
 
 
e0c5b9e
58f1964
e0c5b9e
 
58f1964
 
 
 
 
 
e0c5b9e
 
58f1964
e0c5b9e
6f00c3d
1d94066
58f1964
1d94066
58f1964
 
 
e0c5b9e
 
1d94066
e0c5b9e
 
58f1964
e0c5b9e
 
 
58f1964
e0c5b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3f829
e0c5b9e
 
ba883e9
58f1964
6f00c3d
45bf8dd
ba883e9
58f1964
 
45bf8dd
ba883e9
58f1964
 
b2461b4
58f1964
 
 
ba883e9
58f1964
 
8bc67af
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import asyncio
import datetime
import logging
import os
import time
import traceback
import tempfile
from concurrent.futures import ThreadPoolExecutor

import edge_tts
import librosa
import torch
from fairseq import checkpoint_utils
import uuid

from config import Config
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from rmvpe import RMVPE
from vc_infer_pipeline import VC

model_cache = {}


# Set logging levels
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

limitation = os.getenv("SYSTEM") == "spaces"

config = Config()

# Edge TTS voices
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"]

# RVC models directory
model_root = "weights"
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
models.sort()

def get_unique_filename(extension):
    return f"{uuid.uuid4()}.{extension}"

def model_data(model_name):
    # We will not modify this function to cache models
    pth_path = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".pth")
    ][0]
    print(f"Loading {pth_path}")
    cpt = torch.load(pth_path, map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
    if_f0 = cpt.get("f0", 1)
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    else:
        raise ValueError("Unknown version")
    del net_g.enc_q
    net_g.load_state_dict(cpt["weight"], strict=False)
    print("Model loaded")
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)

    index_files = [
        f"{model_root}/{model_name}/{f}"
        for f in os.listdir(f"{model_root}/{model_name}")
        if f.endswith(".index")
    ]
    if len(index_files) == 0:
        print("No index file found")
        index_file = ""
    else:
        index_file = index_files[0]
        print(f"Index file found: {index_file}")

    return tgt_sr, net_g, vc, version, index_file, if_f0

def load_hubert():
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    return hubert_model.eval()

def get_model_names():
    return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]

# Initialize the global models
hubert_model = load_hubert()
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)

voice_mapping = {
    "Mongolian Male": "mn-MN-BataaNeural",
    "Mongolian Female": "mn-MN-YesuiNeural"
}

# Function to run async functions in a new event loop within a thread
def run_async_in_thread(fn, *args):
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    result = loop.run_until_complete(fn(*args))
    loop.close()
    return result

def parallel_tts(tasks):
    # Increase max_workers to better utilize CPU and GPU resources
    with ThreadPoolExecutor(max_workers=20) as executor:  # Adjust based on your server capacity
        futures = [executor.submit(run_async_in_thread, tts, *task) for task in tasks]
        results = [future.result() for future in futures]
    return results

async def tts(
    model_name,
    tts_text,
    tts_voice,
    index_rate,
    use_uploaded_voice,
    uploaded_voice,
):
    # Default values for parameters
    speed = 0  # Default speech speed
    f0_up_key = 0  # Default pitch adjustment
    f0_method = "rmvpe"  # Default pitch extraction method
    protect = 0.33  # Default protect value
    filter_radius = 3
    resample_sr = 0
    rms_mix_rate = 0.25
    edge_time = 0  # Initialize edge_time

    edge_output_filename = get_unique_filename("mp3")

    try:
        if use_uploaded_voice:
            if uploaded_voice is None:
                return "No voice file uploaded.", None, None
            
            # Process the uploaded voice file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
                tmp_file.write(uploaded_voice)
                uploaded_file_path = tmp_file.name

            audio, sr = librosa.load(uploaded_file_path, sr=16000, mono=True)
        else:
            # EdgeTTS processing
            if limitation and len(tts_text) > 12000:
                return (
                    f"Text characters should be at most 12000 in this huggingface space, but got {len(tts_text)} characters.",
                    None,
                    None,
                )
            
            # Invoke Edge TTS
            t0 = time.time()
            speed_str = f"+{speed}%" if speed >= 0 else f"{speed}%"
            await edge_tts.Communicate(
                tts_text, tts_voice, rate=speed_str
            ).save(edge_output_filename)
            t1 = time.time()
            edge_time = t1 - t0

            audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)

        # Common processing after loading the audio
        duration = len(audio) / sr
        print(f"Audio duration: {duration}s")
        if limitation and duration >= 20000:
            return (
                f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.",
                None,
                None,
            )

        f0_up_key = int(f0_up_key)
        # Load the model
        tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)

        # Setup for RMVPE or other pitch extraction methods
        if f0_method == "rmvpe":
            vc.model_rmvpe = rmvpe_model

        # Perform voice conversion pipeline
        times = [0, 0, 0]
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            0,
            audio,
            edge_output_filename if not use_uploaded_voice else uploaded_file_path,
            times,
            f0_up_key,
            f0_method,
            index_file,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            None,
        )

        if tgt_sr != resample_sr and resample_sr >= 16000:
            tgt_sr = resample_sr
        
        info = f"Success. Time: tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
        print(info)
        return (
            info,
            edge_output_filename if not use_uploaded_voice else None,   
            (tgt_sr, audio_opt),
        )

    except EOFError:
        info = (
            "Output not valid. This may occur when input text and speaker do not match."
        )
        print(info)
        return info, None, None
    except Exception as e:
        traceback_info = traceback.format_exc()
        print(traceback_info)
        return str(e), None, None