tts / app.py
MAZALA2024's picture
Update app.py
49d1e2e verified
raw
history blame
2.07 kB
import gradio as gr
import base64
import numpy as np
from scipy.io import wavfile
from voice_processing import tts_processor, get_model_names, voice_mapping
from io import BytesIO
import asyncio
import tempfile
import os
async def convert_tts(model_name, tts_text, selected_voice, slang_rate, use_uploaded_voice, voice_upload):
edge_tts_voice = voice_mapping.get(selected_voice)
if not edge_tts_voice:
return {"error": f"Invalid voice '{selected_voice}'."}, None
voice_upload_file = None
if use_uploaded_voice and voice_upload is not None:
with open(voice_upload.name, 'rb') as f:
voice_upload_file = f.read()
info, edge_tts_output_path, tts_output_data = await tts_processor.tts(
model_name, tts_text, edge_tts_voice, slang_rate, use_uploaded_voice, voice_upload_file
)
if tts_output_data:
tgt_sr, audio_output = tts_output_data
# Create a temporary file to save the audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
if isinstance(audio_output, np.ndarray):
wavfile.write(temp_file.name, tgt_sr, audio_output)
else:
temp_file.write(audio_output)
return {"info": info}, temp_file.name
else:
return {"error": info}, None
def get_models():
return get_model_names()
def get_voices():
return list(voice_mapping.keys())
iface = gr.Interface(
fn=convert_tts,
inputs=[
gr.Dropdown(choices=get_models(), label="Model", interactive=True),
gr.Textbox(label="Text", placeholder="Enter text here"),
gr.Dropdown(choices=get_voices(), label="Voice", interactive=True),
gr.Slider(minimum=0, maximum=1, step=0.01, label="Slang Rate"),
gr.Checkbox(label="Use Uploaded Voice"),
gr.File(label="Voice File")
],
outputs=[
gr.JSON(label="Info"),
gr.Audio(label="Generated Audio")
],
title="Text-to-Speech Conversion"
)
if __name__ == "__main__":
iface.launch(debug=True)