tts / app.py
MAZALA2024's picture
Update app.py
5194e17 verified
raw
history blame
2.27 kB
import gradio as gr
import base64
import numpy as np
from scipy.io import wavfile
from voice_processing import parallel_tts, get_model_names, voice_mapping
from io import BytesIO
import asyncio
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
async def convert_tts(model_name, tts_text, selected_voice, slang_rate, use_uploaded_voice, voice_upload):
try:
edge_tts_voice = voice_mapping.get(selected_voice)
if not edge_tts_voice:
raise ValueError(f"Invalid voice '{selected_voice}'.")
voice_upload_file = None
if use_uploaded_voice and voice_upload is not None:
with open(voice_upload.name, 'rb') as f:
voice_upload_file = f.read()
# Create task for parallel processing
task = (
model_name, tts_text, edge_tts_voice, slang_rate, use_uploaded_voice, voice_upload_file
)
# Asynchronous call to your tts processing function using parallel processing
result = await asyncio.get_event_loop().run_in_executor(None, parallel_tts, [task])
info, _, (tgt_sr, audio_output) = result[0]
return {"info": info}, (tgt_sr, audio_output)
except Exception as e:
logger.exception("Error in convert_tts")
return {"error": str(e)}, None
def get_models():
return get_model_names()
def get_voices():
return list(voice_mapping.keys())
# Initialize the Gradio interface
iface = gr.Interface(
fn=convert_tts,
inputs=[
gr.Dropdown(choices=get_models(), label="Model", interactive=True),
gr.Textbox(label="Text", placeholder="Enter text here"),
gr.Dropdown(choices=get_voices(), label="Voice", interactive=True),
gr.Slider(minimum=0, maximum=1, step=0.01, label="Slang Rate"),
gr.Checkbox(label="Use Uploaded Voice"),
gr.File(label="Voice File")
],
outputs=[
gr.JSON(label="Info"),
gr.Audio(label="Generated Audio", type="numpy")
],
title="Text-to-Speech Conversion"
).queue(concurrency_count=16) # Adjust based on your server's capacity
# Launch the interface
if __name__ == "__main__":
iface.launch(debug=True)