|
import asyncio
|
|
import datetime
|
|
import logging
|
|
import os
|
|
import time
|
|
import traceback
|
|
|
|
import edge_tts
|
|
import gradio as gr
|
|
import librosa
|
|
import torch
|
|
from fairseq import checkpoint_utils
|
|
|
|
from config import Config
|
|
from lib.infer_pack.models import (
|
|
SynthesizerTrnMs256NSFsid,
|
|
SynthesizerTrnMs256NSFsid_nono,
|
|
SynthesizerTrnMs768NSFsid,
|
|
SynthesizerTrnMs768NSFsid_nono,
|
|
)
|
|
from rmvpe import RMVPE
|
|
from vc_infer_pipeline import VC
|
|
|
|
|
|
logging.getLogger("fairseq").setLevel(logging.WARNING)
|
|
logging.getLogger("numba").setLevel(logging.WARNING)
|
|
logging.getLogger("markdown_it").setLevel(logging.WARNING)
|
|
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
|
logging.getLogger("matplotlib").setLevel(logging.WARNING)
|
|
|
|
limitation = os.getenv("SYSTEM") == "spaces"
|
|
|
|
config = Config()
|
|
|
|
|
|
edge_output_filename = "edge_output.mp3"
|
|
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
|
|
tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"]
|
|
|
|
|
|
model_root = "weights"
|
|
models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")]
|
|
models.sort()
|
|
|
|
|
|
def model_data(model_name):
|
|
|
|
pth_path = [
|
|
f"{model_root}/{model_name}/{f}"
|
|
for f in os.listdir(f"{model_root}/{model_name}")
|
|
if f.endswith(".pth")
|
|
][0]
|
|
print(f"Loading {pth_path}")
|
|
cpt = torch.load(pth_path, map_location="cpu")
|
|
tgt_sr = cpt["config"][-1]
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
|
if_f0 = cpt.get("f0", 1)
|
|
version = cpt.get("version", "v1")
|
|
if version == "v1":
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
elif version == "v2":
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
|
else:
|
|
raise ValueError("Unknown version")
|
|
del net_g.enc_q
|
|
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
print("Model loaded")
|
|
net_g.eval().to(config.device)
|
|
if config.is_half:
|
|
net_g = net_g.half()
|
|
else:
|
|
net_g = net_g.float()
|
|
vc = VC(tgt_sr, config)
|
|
|
|
|
|
index_files = [
|
|
f"{model_root}/{model_name}/{f}"
|
|
for f in os.listdir(f"{model_root}/{model_name}")
|
|
if f.endswith(".index")
|
|
]
|
|
if len(index_files) == 0:
|
|
print("No index file found")
|
|
index_file = ""
|
|
else:
|
|
index_file = index_files[0]
|
|
print(f"Index file found: {index_file}")
|
|
|
|
return tgt_sr, net_g, vc, version, index_file, if_f0
|
|
|
|
|
|
def load_hubert():
|
|
|
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
|
["hubert_base.pt"],
|
|
suffix="",
|
|
)
|
|
hubert_model = models[0]
|
|
hubert_model = hubert_model.to(config.device)
|
|
if config.is_half:
|
|
hubert_model = hubert_model.half()
|
|
else:
|
|
hubert_model = hubert_model.float()
|
|
return hubert_model.eval()
|
|
|
|
|
|
def tts(
|
|
model_name,
|
|
speed,
|
|
tts_text,
|
|
tts_voice,
|
|
f0_up_key,
|
|
f0_method,
|
|
index_rate,
|
|
protect,
|
|
filter_radius=3,
|
|
resample_sr=0,
|
|
rms_mix_rate=0.25,
|
|
):
|
|
print("------------------")
|
|
print(datetime.datetime.now())
|
|
print("tts_text:")
|
|
print(tts_text)
|
|
print(f"tts_voice: {tts_voice}, speed: {speed}")
|
|
print(f"Model name: {model_name}")
|
|
print(f"F0: {f0_method}, Key: {f0_up_key}, Index: {index_rate}, Protect: {protect}")
|
|
try:
|
|
if limitation and len(tts_text) > 280:
|
|
print("Error: Text too long")
|
|
return (
|
|
f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.",
|
|
None,
|
|
None,
|
|
)
|
|
t0 = time.time()
|
|
if speed >= 0:
|
|
speed_str = f"+{speed}%"
|
|
else:
|
|
speed_str = f"{speed}%"
|
|
asyncio.run(
|
|
edge_tts.Communicate(
|
|
tts_text, tts_voice, rate=speed_str
|
|
).save(edge_output_filename)
|
|
)
|
|
t1 = time.time()
|
|
edge_time = t1 - t0
|
|
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True)
|
|
duration = len(audio) / sr
|
|
print(f"Audio duration: {duration}s")
|
|
if limitation and duration >= 20:
|
|
print("Error: Audio too long")
|
|
return (
|
|
f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.",
|
|
edge_output_filename,
|
|
None,
|
|
)
|
|
f0_up_key = int(f0_up_key)
|
|
|
|
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name)
|
|
if f0_method == "rmvpe":
|
|
vc.model_rmvpe = rmvpe_model
|
|
times = [0, 0, 0]
|
|
audio_opt = vc.pipeline(
|
|
hubert_model,
|
|
net_g,
|
|
0,
|
|
audio,
|
|
edge_output_filename,
|
|
times,
|
|
f0_up_key,
|
|
f0_method,
|
|
index_file,
|
|
|
|
index_rate,
|
|
if_f0,
|
|
filter_radius,
|
|
tgt_sr,
|
|
resample_sr,
|
|
rms_mix_rate,
|
|
version,
|
|
protect,
|
|
None,
|
|
)
|
|
if tgt_sr != resample_sr >= 16000:
|
|
tgt_sr = resample_sr
|
|
info = f"Success. Time: edge-tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s"
|
|
print(info)
|
|
return (
|
|
info,
|
|
edge_output_filename,
|
|
(tgt_sr, audio_opt),
|
|
)
|
|
except EOFError:
|
|
info = (
|
|
"It seems that the edge-tts output is not valid. "
|
|
"This may occur when the input text and the speaker do not match. "
|
|
"For example, maybe you entered Japanese (without alphabets) text but chose non-Japanese speaker?"
|
|
)
|
|
print(info)
|
|
return info, None, None
|
|
except:
|
|
info = traceback.format_exc()
|
|
print(info)
|
|
return info, None, None
|
|
|
|
|
|
print("Loading hubert model...")
|
|
hubert_model = load_hubert()
|
|
print("Hubert model loaded.")
|
|
|
|
print("Loading rmvpe model...")
|
|
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device)
|
|
print("rmvpe model loaded.")
|
|
|
|
initial_md = """
|
|
# RVC text-to-speech demo
|
|
|
|
This is a text-to-speech demo of RVC moe models of [rvc_okiba](https://huggingface.co/litagin/rvc_okiba) using [edge-tts](https://github.com/rany2/edge-tts).
|
|
|
|
Input text ➡[(edge-tts)](https://github.com/rany2/edge-tts)➡ Speech mp3 file ➡[(RVC)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)➡ Final output
|
|
|
|
This runs on the 🤗 server's cpu, so it may be slow.
|
|
|
|
Although the models are trained on Japanese voices and intended for Japanese text, they can also be used with other languages with the corresponding edge-tts speaker (but possibly with a Japanese accent).
|
|
|
|
Input characters are limited to 280 characters, and the speech audio is limited to 20 seconds in this 🤗 space.
|
|
|
|
[Visit this GitHub repo](https://github.com/litagin02/rvc-tts-webui) for running locally with your models and GPU!
|
|
"""
|
|
|
|
app = gr.Blocks()
|
|
with app:
|
|
with gr.Row():
|
|
with gr.Column():
|
|
model_name = gr.Dropdown(
|
|
label="Model (all models except man-_ are girl models)",
|
|
choices=models,
|
|
value=models[0],
|
|
)
|
|
f0_key_up = gr.Number(
|
|
label="Tune (+12 = 1 octave up from edge-tts, the best value depends on the models and speakers)",
|
|
value=0,
|
|
)
|
|
with gr.Column():
|
|
f0_method = gr.Radio(
|
|
label="Pitch extraction method (pm: very fast, low quality, rmvpe: a little slow, high quality)",
|
|
choices=["pm", "rmvpe"],
|
|
value="rmvpe",
|
|
interactive=True,
|
|
)
|
|
index_rate = gr.Slider(
|
|
minimum=0,
|
|
maximum=1,
|
|
label="Slang rate",
|
|
value=0.75,
|
|
interactive=True,
|
|
)
|
|
protect0 = gr.Slider(
|
|
minimum=0,
|
|
maximum=0.5,
|
|
label="Protect",
|
|
value=0.33,
|
|
step=0.01,
|
|
interactive=True,
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
tts_voice = gr.Dropdown(
|
|
label="Edge-tts speaker (format: language-Country-Name-Gender)",
|
|
choices=tts_voices,
|
|
allow_custom_value=False,
|
|
value="mn-MN-BataaNeural",
|
|
)
|
|
speed = gr.Slider(
|
|
minimum=-100,
|
|
maximum=100,
|
|
label="Speech speed (%)",
|
|
value=0,
|
|
step=10,
|
|
interactive=True,
|
|
)
|
|
tts_text = gr.Textbox(label="Input Text", value="Текстыг оруулна уу.")
|
|
with gr.Column():
|
|
but0 = gr.Button("Convert", variant="primary")
|
|
info_text = gr.Textbox(label="Output info")
|
|
with gr.Column():
|
|
edge_tts_output = gr.Audio(label="Edge Voice", type="filepath")
|
|
tts_output = gr.Audio(label="Result")
|
|
but0.click(
|
|
tts,
|
|
[
|
|
model_name,
|
|
speed,
|
|
tts_text,
|
|
tts_voice,
|
|
f0_key_up,
|
|
f0_method,
|
|
index_rate,
|
|
protect0,
|
|
],
|
|
[info_text, edge_tts_output, tts_output],
|
|
)
|
|
|
|
app.launch()
|
|
|