Update app.py
Browse files
app.py
CHANGED
@@ -4,40 +4,48 @@ import numpy as np
|
|
4 |
from scipy.io import wavfile
|
5 |
from voice_processing import parallel_tts, get_model_names, voice_mapping
|
6 |
from io import BytesIO
|
7 |
-
import asyncio
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
# Define an asynchronous function for the Gradio interface
|
10 |
async def convert_tts(model_name, tts_text, selected_voice, slang_rate, use_uploaded_voice, voice_upload):
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
if isinstance(audio_output, np.ndarray):
|
32 |
-
byte_io = BytesIO()
|
33 |
-
wavfile.write(byte_io, tgt_sr, audio_output)
|
34 |
-
byte_io.seek(0)
|
35 |
-
audio_bytes = byte_io.read()
|
36 |
-
else:
|
37 |
-
audio_bytes = audio_output
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
def get_models():
|
43 |
return get_model_names()
|
@@ -58,10 +66,11 @@ iface = gr.Interface(
|
|
58 |
],
|
59 |
outputs=[
|
60 |
gr.JSON(label="Info"),
|
61 |
-
gr.
|
62 |
],
|
63 |
title="Text-to-Speech Conversion"
|
64 |
-
)
|
65 |
|
66 |
# Launch the interface
|
67 |
-
|
|
|
|
4 |
from scipy.io import wavfile
|
5 |
from voice_processing import parallel_tts, get_model_names, voice_mapping
|
6 |
from io import BytesIO
|
7 |
+
import asyncio
|
8 |
+
import logging
|
9 |
+
|
10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
|
|
|
13 |
async def convert_tts(model_name, tts_text, selected_voice, slang_rate, use_uploaded_voice, voice_upload):
|
14 |
+
try:
|
15 |
+
edge_tts_voice = voice_mapping.get(selected_voice)
|
16 |
+
if not edge_tts_voice:
|
17 |
+
raise ValueError(f"Invalid voice '{selected_voice}'.")
|
18 |
+
|
19 |
+
voice_upload_file = None
|
20 |
+
if use_uploaded_voice and voice_upload is not None:
|
21 |
+
with open(voice_upload.name, 'rb') as f:
|
22 |
+
voice_upload_file = f.read()
|
23 |
|
24 |
+
# Create task for parallel processing
|
25 |
+
task = (
|
26 |
+
model_name, tts_text, edge_tts_voice, slang_rate, use_uploaded_voice, voice_upload_file
|
27 |
+
)
|
28 |
+
|
29 |
+
# Asynchronous call to your tts processing function using parallel processing
|
30 |
+
result = await asyncio.get_event_loop().run_in_executor(None, parallel_tts, [task])
|
31 |
+
info, _, (tgt_sr, audio_output) = result[0]
|
32 |
|
33 |
+
# Process audio output to bytes
|
34 |
+
audio_bytes = None
|
35 |
+
if isinstance(audio_output, np.ndarray):
|
36 |
+
byte_io = BytesIO()
|
37 |
+
wavfile.write(byte_io, tgt_sr, audio_output)
|
38 |
+
byte_io.seek(0)
|
39 |
+
audio_bytes = byte_io.read()
|
40 |
+
else:
|
41 |
+
audio_bytes = audio_output
|
42 |
|
43 |
+
audio_data_uri = f"data:audio/wav;base64,{base64.b64encode(audio_bytes).decode('utf-8')}"
|
44 |
+
return {"info": info}, audio_data_uri
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
except Exception as e:
|
47 |
+
logger.exception("Error in convert_tts")
|
48 |
+
return {"error": str(e)}, None
|
49 |
|
50 |
def get_models():
|
51 |
return get_model_names()
|
|
|
66 |
],
|
67 |
outputs=[
|
68 |
gr.JSON(label="Info"),
|
69 |
+
gr.Audio(label="Generated Audio", type="uri")
|
70 |
],
|
71 |
title="Text-to-Speech Conversion"
|
72 |
+
).queue(concurrency_count=16) # Adjust based on your server's capacity
|
73 |
|
74 |
# Launch the interface
|
75 |
+
if __name__ == "__main__":
|
76 |
+
iface.launch(debug=True)
|