import asyncio import datetime import logging import os import time import traceback import tempfile from concurrent.futures import ThreadPoolExecutor # import edge_tts # Commented out as we're not using Edge TTS import librosa import torch from fairseq import checkpoint_utils import uuid from config import Config from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from rmvpe import RMVPE from vc_infer_pipeline import VC model_cache = {} # Set logging levels logging.getLogger("fairseq").setLevel(logging.WARNING) logging.getLogger("numba").setLevel(logging.WARNING) logging.getLogger("markdown_it").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("matplotlib").setLevel(logging.WARNING) limitation = os.getenv("SYSTEM") == "spaces" config = Config() # Edge TTS voices # tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) # tts_voices = ["mn-MN-BataaNeural", "mn-MN-YesuiNeural"] # RVC models directory model_root = "weights" models = [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")] models.sort() def get_unique_filename(extension): return f"{uuid.uuid4()}.{extension}" def model_data(model_name): # We will not modify this function to cache models pth_path = [ f"{model_root}/{model_name}/{f}" for f in os.listdir(f"{model_root}/{model_name}") if f.endswith(".pth") ][0] print(f"Loading {pth_path}") cpt = torch.load(pth_path, map_location="cpu") tgt_sr = cpt["config"][-1] cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk if_f0 = cpt.get("f0", 1) version = cpt.get("version", "v1") if version == "v1": if if_f0 == 1: net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) elif version == "v2": if if_f0 == 1: net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) else: net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) else: raise ValueError("Unknown version") del net_g.enc_q net_g.load_state_dict(cpt["weight"], strict=False) print("Model loaded") net_g.eval().to(config.device) if config.is_half: net_g = net_g.half() else: net_g = net_g.float() vc = VC(tgt_sr, config) index_files = [ f"{model_root}/{model_name}/{f}" for f in os.listdir(f"{model_root}/{model_name}") if f.endswith(".index") ] if len(index_files) == 0: print("No index file found") index_file = "" else: index_file = index_files[0] print(f"Index file found: {index_file}") return tgt_sr, net_g, vc, version, index_file, if_f0 def load_hubert(): models, _, _ = checkpoint_utils.load_model_ensemble_and_task( ["hubert_base.pt"], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(config.device) if config.is_half: hubert_model = hubert_model.half() else: hubert_model = hubert_model.float() return hubert_model.eval() def get_model_names(): return [d for d in os.listdir(model_root) if os.path.isdir(f"{model_root}/{d}")] # Initialize the global models hubert_model = load_hubert() rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device) # voice_mapping = { # "Mongolian Male": "mn-MN-BataaNeural", # "Mongolian Female": "mn-MN-YesuiNeural" # } # Function to run async functions in a new event loop within a thread def run_async_in_thread(fn, *args): loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) result = loop.run_until_complete(fn(*args)) loop.close() return result def parallel_tts(tasks): with ThreadPoolExecutor(max_workers=10) as executor: # futures = [executor.submit(run_async_in_thread, tts, *task) for task in tasks] # Original line futures = [executor.submit(run_async_in_thread, process_audio, *task) for task in tasks] # New line results = [future.result() for future in futures] return results # Keep the original tts function but commented out ''' async def tts( model_name, tts_text, tts_voice, index_rate, use_uploaded_voice, uploaded_voice, ): # Original TTS function code here ... ''' # New function for audio processing only async def process_audio( model_name, text_placeholder, voice_placeholder, index_rate, use_uploaded_voice, uploaded_voice, ): # Default values for parameters f0_up_key = 0 f0_method = "rmvpe" protect = 0.33 filter_radius = 3 resample_sr = 0 rms_mix_rate = 0.25 try: if uploaded_voice is None: return "No voice file uploaded.", None, None # Process the uploaded voice file - read the file instead of writing it audio, sr = librosa.load(uploaded_voice, sr=16000, mono=True) # Load directly from filepath duration = len(audio) / sr print(f"Audio duration: {duration}s") if limitation and duration >= 20000: return ( f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.", None, None, ) # Load the model and process audio tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name) if f0_method == "rmvpe": vc.model_rmvpe = rmvpe_model times = [0, 0, 0] audio_opt = vc.pipeline( hubert_model, net_g, 0, audio, uploaded_voice, # Use the filepath directly times, f0_up_key, f0_method, index_file, index_rate, if_f0, filter_radius, tgt_sr, resample_sr, rms_mix_rate, version, protect, None, ) if tgt_sr != resample_sr and resample_sr >= 16000: tgt_sr = resample_sr info = f"Success. Time: npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s" print(info) return ( info, None, (tgt_sr, audio_opt), ) except Exception as e: traceback_info = traceback.format_exc() print(traceback_info) return str(e), None, None