import gradio as gr from transformers import pipeline # Initialize the image classification pipeline classifier = pipeline("image-classification") # Alternatively you can define what model should the pipeline use, sometimes it requires that you login with your token #classifier = pipeline("image-classification", model="microsoft/resnet-50") #print(classifier.model) def classify_image(image): results = classifier(image) # Get the top prediction top_result = results[0] label = top_result['label'] score = top_result['score'] return f"Label: {label}, Confidence: {score:.2f}" iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil", label="Upload an Image"), outputs=gr.Textbox(label="Prediction"), title="Image Classifier" ) iface.launch()