genrl / agent /dreamer_utils.py
mazpie's picture
Initial commit
2d9a728
raw
history blame
No virus
37.3 kB
import re
import numpy as np
import tools.utils as utils
import torch.nn as nn
import torch
import torch.distributions as D
import torch.nn.functional as F
Module = nn.Module
def symlog(x):
return torch.sign(x) * torch.log(torch.abs(x) + 1.0)
def symexp(x):
return torch.sign(x) * (torch.exp(torch.abs(x)) - 1.0)
def signed_hyperbolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
"""Signed hyperbolic transform, inverse of signed_parabolic."""
return torch.sign(x) * (torch.sqrt(torch.abs(x) + 1) - 1) + eps * x
def signed_parabolic(x: torch.Tensor, eps: float = 1e-3) -> torch.Tensor:
"""Signed parabolic transform, inverse of signed_hyperbolic."""
z = torch.sqrt(1 + 4 * eps * (eps + 1 + torch.abs(x))) / 2 / eps - 1 / 2 / eps
return torch.sign(x) * (torch.square(z) - 1)
class SampleDist:
def __init__(self, dist: D.Distribution, samples=100):
self._dist = dist
self._samples = samples
@property
def name(self):
return 'SampleDist'
def __getattr__(self, name):
return getattr(self._dist, name)
@property
def mean(self):
sample = self._dist.rsample((self._samples,))
return torch.mean(sample, 0)
def mode(self):
dist = self._dist.expand((self._samples, *self._dist.batch_shape))
sample = dist.rsample()
logprob = dist.log_prob(sample)
batch_size = sample.size(1)
feature_size = sample.size(2)
indices = torch.argmax(logprob, dim=0).reshape(1, batch_size, 1).expand(1, batch_size, feature_size)
return torch.gather(sample, 0, indices).squeeze(0)
def entropy(self):
sample = self._dist.rsample((self._samples,))
logprob = self._dist.log_prob(sample)
return -torch.mean(logprob, 0)
def sample(self):
return self._dist.rsample()
class MSEDist:
def __init__(self, mode, agg="sum"):
self._mode = mode
self._agg = agg
@property
def mean(self):
return self._mode
def mode(self):
return self._mode
def log_prob(self, value):
assert self._mode.shape == value.shape, (self._mode.shape, value.shape)
distance = (self._mode - value) ** 2
if self._agg == "mean":
loss = distance.mean(list(range(len(distance.shape)))[2:])
elif self._agg == "sum":
loss = distance.sum(list(range(len(distance.shape)))[2:])
else:
raise NotImplementedError(self._agg)
return -loss
class SymlogDist:
def __init__(self, mode, dims, dist='mse', agg='sum', tol=1e-8):
self._mode = mode
self._dims = tuple([-x for x in range(1, dims + 1)])
self._dist = dist
self._agg = agg
self._tol = tol
self.batch_shape = mode.shape[:len(mode.shape) - dims]
self.event_shape = mode.shape[len(mode.shape) - dims:]
def mode(self):
return symexp(self._mode)
def mean(self):
return symexp(self._mode)
def log_prob(self, value):
assert self._mode.shape == value.shape, (self._mode.shape, value.shape)
if self._dist == 'mse':
distance = (self._mode - symlog(value)) ** 2
distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance)
elif self._dist == 'abs':
distance = torch.abs(self._mode - symlog(value))
distance = torch.where(distance < self._tol, torch.tensor([0.], dtype=distance.dtype, device=distance.device), distance)
else:
raise NotImplementedError(self._dist)
if self._agg == 'mean':
loss = distance.mean(self._dims)
elif self._agg == 'sum':
loss = distance.sum(self._dims)
else:
raise NotImplementedError(self._agg)
return -loss
class TwoHotDist:
def __init__(
self,
logits,
low=-20.0,
high=20.0,
transfwd=symlog,
transbwd=symexp,
):
assert logits.shape[-1] == 255
self.logits = logits
self.probs = torch.softmax(logits, -1)
self.buckets = torch.linspace(low, high, steps=255).to(logits.device)
self.width = (self.buckets[-1] - self.buckets[0]) / 255
self.transfwd = transfwd
self.transbwd = transbwd
@property
def mean(self):
_mean = self.probs * self.buckets
return self.transbwd(torch.sum(_mean, dim=-1, keepdim=True))
@property
def mode(self):
return self.mean
# Inside OneHotCategorical, log_prob is calculated using only max element in targets
def log_prob(self, x):
x = self.transfwd(x)
# x(time, batch, 1)
below = torch.sum((self.buckets <= x[..., None]).to(torch.int32), dim=-1) - 1
above = len(self.buckets) - torch.sum(
(self.buckets > x[..., None]).to(torch.int32), dim=-1
)
# this is implemented using clip at the original repo as the gradients are not backpropagated for the out of limits.
below = torch.clip(below, 0, len(self.buckets) - 1)
above = torch.clip(above, 0, len(self.buckets) - 1)
equal = below == above
dist_to_below = torch.where(equal, 1, torch.abs(self.buckets[below] - x))
dist_to_above = torch.where(equal, 1, torch.abs(self.buckets[above] - x))
total = dist_to_below + dist_to_above
weight_below = dist_to_above / total
weight_above = dist_to_below / total
target = (
F.one_hot(below, num_classes=len(self.buckets)) * weight_below[..., None]
+ F.one_hot(above, num_classes=len(self.buckets)) * weight_above[..., None]
)
log_pred = self.logits - torch.logsumexp(self.logits, -1, keepdim=True)
target = target.squeeze(-2)
return (target * log_pred).sum(-1)
def log_prob_target(self, target):
log_pred = super().logits - torch.logsumexp(super().logits, -1, keepdim=True)
return (target * log_pred).sum(-1)
class OneHotDist(D.OneHotCategorical):
def __init__(self, logits=None, probs=None, unif_mix=0.99):
super().__init__(logits=logits, probs=probs)
probs = super().probs
probs = unif_mix * probs + (1 - unif_mix) * torch.ones_like(probs, device=probs.device) / probs.shape[-1]
super().__init__(probs=probs)
def mode(self):
_mode = F.one_hot(torch.argmax(super().logits, axis=-1), super().logits.shape[-1])
return _mode.detach() + super().logits - super().logits.detach()
def sample(self, sample_shape=(), seed=None):
if seed is not None:
raise ValueError('need to check')
sample = super().sample(sample_shape)
probs = super().probs
while len(probs.shape) < len(sample.shape):
probs = probs[None]
sample += probs - probs.detach() # ST-gradients
return sample
class BernoulliDist(D.Bernoulli):
def __init__(self, logits=None, probs=None):
super().__init__(logits=logits, probs=probs)
def sample(self, sample_shape=(), seed=None):
if seed is not None:
raise ValueError('need to check')
sample = super().sample(sample_shape)
probs = super().probs
while len(probs.shape) < len(sample.shape):
probs = probs[None]
sample += probs - probs.detach() # ST-gradients
return sample
def static_scan_for_lambda_return(fn, inputs, start):
last = start
indices = range(inputs[0].shape[0])
indices = reversed(indices)
flag = True
for index in indices:
inp = lambda x: (_input[x].unsqueeze(0) for _input in inputs)
last = fn(last, *inp(index))
if flag:
outputs = last
flag = False
else:
outputs = torch.cat([last, outputs], dim=0)
return outputs
def lambda_return(
reward, value, pcont, bootstrap, lambda_, axis):
# Setting lambda=1 gives a discounted Monte Carlo return.
# Setting lambda=0 gives a fixed 1-step return.
#assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape)
assert len(reward.shape) == len(value.shape), (reward.shape, value.shape)
if isinstance(pcont, (int, float)):
pcont = pcont * torch.ones_like(reward, device=reward.device)
dims = list(range(len(reward.shape)))
dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:]
if axis != 0:
reward = reward.permute(dims)
value = value.permute(dims)
pcont = pcont.permute(dims)
if bootstrap is None:
bootstrap = torch.zeros_like(value[-1], device=reward.device)
if len(bootstrap.shape) < len(value.shape):
bootstrap = bootstrap[None]
next_values = torch.cat([value[1:], bootstrap], 0)
inputs = reward + pcont * next_values * (1 - lambda_)
returns = static_scan_for_lambda_return(
lambda agg, cur0, cur1: cur0 + cur1 * lambda_ * agg,
(inputs, pcont), bootstrap)
if axis != 0:
returns = returns.permute(dims)
return returns
def static_scan(fn, inputs, start, reverse=False, unpack=False):
last = start
indices = range(inputs[0].shape[0])
flag = True
for index in indices:
inp = lambda x: (_input[x] for _input in inputs)
if unpack:
last = fn(last, *[inp[index] for inp in inputs])
else:
last = fn(last, inp(index))
if flag:
if type(last) == type({}):
outputs = {key: [value] for key, value in last.items()}
else:
outputs = []
for _last in last:
if type(_last) == type({}):
outputs.append({key: [value] for key, value in _last.items()})
else:
outputs.append([_last])
flag = False
else:
if type(last) == type({}):
for key in last.keys():
outputs[key].append(last[key])
else:
for j in range(len(outputs)):
if type(last[j]) == type({}):
for key in last[j].keys():
outputs[j][key].append(last[j][key])
else:
outputs[j].append(last[j])
# Stack everything at the end
if type(last) == type({}):
for key in last.keys():
outputs[key] = torch.stack(outputs[key], dim=0)
else:
for j in range(len(outputs)):
if type(last[j]) == type({}):
for key in last[j].keys():
outputs[j][key] = torch.stack(outputs[j][key], dim=0)
else:
outputs[j] = torch.stack(outputs[j], dim=0)
if type(last) == type({}):
outputs = [outputs]
return outputs
class EnsembleRSSM(Module):
def __init__(
self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False,
act='SiLU', norm='none', std_act='softplus', min_std=0.1, action_dim=None, embed_dim=1536, device='cuda',
single_obs_posterior=False, cell_input='stoch', cell_type='gru',):
super().__init__()
assert action_dim is not None
self.device = device
self._embed_dim = embed_dim
self._action_dim = action_dim
self._ensemble = ensemble
self._stoch = stoch
self._deter = deter
self._hidden = hidden
self._discrete = discrete
self._act = get_act(act)
self._norm = norm
self._std_act = std_act
self._min_std = min_std
self._cell_type = cell_type
self.cell_input = cell_input
if cell_type == 'gru':
self._cell = GRUCell(self._hidden, self._deter, norm=True, device=self.device)
else:
raise NotImplementedError(f"{cell_type} not implemented")
self.single_obs_posterior = single_obs_posterior
if discrete:
self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, stoch*discrete) for _ in range(ensemble)])
self._obs_dist = nn.Linear(hidden, stoch*discrete)
else:
self._ensemble_img_dist = nn.ModuleList([ nn.Linear(hidden, 2*stoch) for _ in range(ensemble)])
self._obs_dist = nn.Linear(hidden, 2*stoch)
# Layer that projects (stoch, input) to cell_state space
cell_state_input_size = getattr(self, f'get_{self.cell_input}_size')()
self._img_in = nn.Sequential(nn.Linear(cell_state_input_size + action_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
# Layer that project deter -> hidden [before projecting hidden -> stoch]
self._ensemble_img_out = nn.ModuleList([ nn.Sequential(nn.Linear(self.get_deter_size(), hidden, bias=norm != 'none'), NormLayer(norm, hidden)) for _ in range(ensemble)])
if self.single_obs_posterior:
self._obs_out = nn.Sequential(nn.Linear(embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
else:
self._obs_out = nn.Sequential(nn.Linear(deter + embed_dim, hidden, bias=norm != 'none'), NormLayer(norm, hidden))
def initial(self, batch_size):
if self._discrete:
state = dict(
logit=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device),
stoch=torch.zeros([batch_size, self._stoch, self._discrete], device=self.device),
deter=self._cell.get_initial_state(None, batch_size))
else:
state = dict(
mean=torch.zeros([batch_size, self._stoch], device=self.device),
std=torch.zeros([batch_size, self._stoch], device=self.device),
stoch=torch.zeros([batch_size, self._stoch], device=self.device),
deter=self._cell.get_initial_state(None, batch_size))
return state
def observe(self, embed, action, is_first, state=None):
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape))))
if state is None: state = self.initial(action.shape[0])
post, prior = static_scan(
lambda prev, inputs: self.obs_step(prev[0], *inputs),
(swap(action), swap(embed), swap(is_first)), (state, state))
post = {k: swap(v) for k, v in post.items()}
prior = {k: swap(v) for k, v in prior.items()}
return post, prior
def imagine(self, action, state=None, sample=True):
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape))))
if state is None:
state = self.initial(action.shape[0])
assert isinstance(state, dict), state
action = swap(action)
prior = static_scan(self.img_step, [action, float(sample) + torch.zeros(action.shape[0])], state, unpack=True)[0]
prior = {k: swap(v) for k, v in prior.items()}
return prior
def get_stoch_size(self,):
if self._discrete:
return self._stoch * self._discrete
else:
return self._stoch
def get_deter_size(self,):
return self._cell.state_size
def get_feat_size(self,):
return self.get_deter_size() + self.get_stoch_size()
def get_stoch(self, state):
stoch = state['stoch']
if self._discrete:
shape = list(stoch.shape[:-2]) + [self._stoch * self._discrete]
stoch = stoch.reshape(shape)
return stoch
def get_deter(self, state):
return state['deter']
def get_feat(self, state):
deter = self.get_deter(state)
stoch = self.get_stoch(state)
return torch.cat([stoch, deter], -1)
def get_dist(self, state, ensemble=False):
if ensemble:
state = self._suff_stats_ensemble(state['deter'])
if self._discrete:
logit = state['logit']
dist = D.Independent(OneHotDist(logit.float()), 1)
else:
mean, std = state['mean'], state['std']
dist = D.Independent(D.Normal(mean, std), 1)
dist.sample = dist.rsample
return dist
def get_unif_dist(self, state):
if self._discrete:
logit = state['logit']
dist = D.Independent(OneHotDist(torch.ones_like(logit, device=logit.device)), 1)
else:
mean, std = state['mean'], state['std']
dist = D.Independent(D.Normal(torch.zeros_like(mean, device=mean.device), torch.ones_like(std, device=std.device)), 1)
dist.sample = dist.rsample
return dist
def obs_step(self, prev_state, prev_action, embed, is_first, should_sample=True):
if is_first.any():
prev_state = { k: torch.einsum('b,b...->b...', 1.0 - is_first.float(), x) for k, x in prev_state.items() }
prev_action = torch.einsum('b,b...->b...', 1.0 - is_first.float(), prev_action)
#
prior = self.img_step(prev_state, prev_action, should_sample)
stoch, stats = self.get_post_stoch(embed, prior, should_sample)
post = {'stoch': stoch, 'deter': prior['deter'], **stats}
return post, prior
def get_post_stoch(self, embed, prior, should_sample=True):
if self.single_obs_posterior:
x = embed
else:
x = torch.cat([prior['deter'], embed], -1)
x = self._obs_out(x)
x = self._act(x)
bs = list(x.shape[:-1])
x = x.reshape([-1, x.shape[-1]])
stats = self._suff_stats_layer('_obs_dist', x)
stats = { k: v.reshape( bs + list(v.shape[1:])) for k, v in stats.items()}
dist = self.get_dist(stats)
stoch = dist.sample() if should_sample else dist.mode()
return stoch, stats
def img_step(self, prev_state, prev_action, sample=True,):
prev_state_input = getattr(self, f'get_{self.cell_input}')(prev_state)
x = torch.cat([prev_state_input, prev_action], -1)
x = self._img_in(x)
x = self._act(x)
deter = prev_state['deter']
if self._cell_type == 'gru':
x, deter = self._cell(x, [deter])
temp_state = {'deter' : deter[0] }
else:
raise NotImplementedError(f"no {self._cell_type} cell method")
deter = deter[0] # It's wrapped in a list.
stoch, stats = self.get_stoch_stats_from_deter_state(temp_state, sample)
prior = {'stoch': stoch, 'deter': deter, **stats}
return prior
def get_stoch_stats_from_deter_state(self, temp_state, sample=True):
stats = self._suff_stats_ensemble(self.get_deter(temp_state))
index = torch.randint(0, self._ensemble, ())
stats = {k: v[index] for k, v in stats.items()}
dist = self.get_dist(stats)
if sample:
stoch = dist.sample()
else:
try:
stoch = dist.mode()
except:
stoch = dist.mean
return stoch, stats
def _suff_stats_ensemble(self, inp):
bs = list(inp.shape[:-1])
inp = inp.reshape([-1, inp.shape[-1]])
stats = []
for k in range(self._ensemble):
x = self._ensemble_img_out[k](inp)
x = self._act(x)
stats.append(self._suff_stats_layer('_ensemble_img_dist', x, k=k))
stats = {
k: torch.stack([x[k] for x in stats], 0)
for k, v in stats[0].items()}
stats = {
k: v.reshape([v.shape[0]] + bs + list(v.shape[2:]))
for k, v in stats.items()}
return stats
def _suff_stats_layer(self, name, x, k=None):
layer = getattr(self, name)
if k is not None:
layer = layer[k]
x = layer(x)
if self._discrete:
logit = x.reshape(list(x.shape[:-1]) + [self._stoch, self._discrete])
return {'logit': logit}
else:
mean, std = torch.chunk(x, 2, -1)
std = {
'softplus': lambda: F.softplus(std),
'sigmoid': lambda: torch.sigmoid(std),
'sigmoid2': lambda: 2 * torch.sigmoid(std / 2),
}[self._std_act]()
std = std + self._min_std
return {'mean': mean, 'std': std}
def vq_loss(self, post, prior, balance):
dim_repr = prior['output'].shape[-1]
# Vectors and codes are the same, but vectors have gradients
dyn_loss = balance * F.mse_loss(prior['output'], post['vectors'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['vectors'])
dyn_loss += balance * F.mse_loss(prior['output'], post['codes'].detach()) + (1 - balance) * F.mse_loss(prior['output'].detach(), post['codes'])
dyn_loss /= 2
vq_loss = 0.25 * F.mse_loss(post['output'], post['codes'].detach()) + F.mse_loss(post['output'].detach(), post['codes'])
loss = vq_loss + dyn_loss
return loss * dim_repr, dyn_loss * dim_repr
def kl_loss(self, post, prior, forward, balance, free, free_avg,):
kld = D.kl_divergence
sg = lambda x: {k: v.detach() for k, v in x.items()}
lhs, rhs = (prior, post) if forward else (post, prior)
mix = balance if forward else (1 - balance)
dtype = post['stoch'].dtype
device = post['stoch'].device
free_tensor = torch.tensor([free], dtype=dtype, device=device)
if balance == 0.5:
value = kld(self.get_dist(lhs), self.get_dist(rhs))
loss = torch.maximum(value, free_tensor).mean()
else:
value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs)))
value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs))
if free_avg:
loss_lhs = torch.maximum(value_lhs.mean(), free_tensor)
loss_rhs = torch.maximum(value_rhs.mean(), free_tensor)
else:
loss_lhs = torch.maximum(value_lhs, free_tensor).mean()
loss_rhs = torch.maximum(value_rhs, free_tensor).mean()
loss = mix * loss_lhs + (1 - mix) * loss_rhs
return loss, value
class Encoder(Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], symlog_inputs=False,):
super().__init__()
self.shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Encoder CNN inputs:', list(self.cnn_keys))
print('Encoder MLP inputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
self._symlog_inputs = symlog_inputs
if len(self.cnn_keys) > 0:
self._conv_model = []
for i, kernel in enumerate(self._cnn_kernels):
if i == 0:
prev_depth = 3
else:
prev_depth = 2 ** (i-1) * self._cnn_depth
depth = 2 ** i * self._cnn_depth
self._conv_model.append(nn.Conv2d(prev_depth, depth, kernel, stride=2))
self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm,depth))
self._conv_model.append(self._act)
self._conv_model = nn.Sequential(*self._conv_model)
if len(self.mlp_keys) > 0:
self._mlp_model = []
for i, width in enumerate(self._mlp_layers):
if i == 0:
prev_width = np.sum([shapes[k] for k in self.mlp_keys])
else:
prev_width = self._mlp_layers[i-1]
self._mlp_model.append(nn.Linear(prev_width, width, bias=norm != 'none'))
self._mlp_model.append(NormLayer(norm, width))
self._mlp_model.append(self._act)
if len(self._mlp_model) == 0:
self._mlp_model.append(nn.Identity())
self._mlp_model = nn.Sequential(*self._mlp_model)
def forward(self, data):
key, shape = list(self.shapes.items())[0]
batch_dims = data[key].shape[:-len(shape)]
data = {
k: v.reshape((-1,) + tuple(v.shape)[len(batch_dims):])
for k, v in data.items()}
outputs = []
if self.cnn_keys:
outputs.append(self._cnn({k: data[k] for k in self.cnn_keys}))
if self.mlp_keys:
outputs.append(self._mlp({k: data[k] for k in self.mlp_keys}))
output = torch.cat(outputs, -1)
return output.reshape(batch_dims + output.shape[1:])
def _cnn(self, data):
x = torch.cat(list(data.values()), -1)
x = self._conv_model(x)
return x.reshape(tuple(x.shape[:-3]) + (-1,))
def _mlp(self, data):
x = torch.cat(list(data.values()), -1)
if self._symlog_inputs:
x = symlog(x)
x = self._mlp_model(x)
return x
class Decoder(Module):
def __init__(
self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='SiLU', norm='none',
cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400], embed_dim=1024, mlp_dist='mse', image_dist='mse'):
super().__init__()
self._embed_dim = embed_dim
self._shapes = shapes
self.cnn_keys = [
k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3]
self.mlp_keys = [
k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1]
print('Decoder CNN outputs:', list(self.cnn_keys))
print('Decoder MLP outputs:', list(self.mlp_keys))
self._act = get_act(act)
self._norm = norm
self._cnn_depth = cnn_depth
self._cnn_kernels = cnn_kernels
self._mlp_layers = mlp_layers
self.channels = {k: self._shapes[k][0] for k in self.cnn_keys}
self._mlp_dist = mlp_dist
self._image_dist = image_dist
if len(self.cnn_keys) > 0:
self._conv_in = nn.Sequential(nn.Linear(embed_dim, 32*self._cnn_depth))
self._conv_model = []
for i, kernel in enumerate(self._cnn_kernels):
if i == 0:
prev_depth = 32*self._cnn_depth
else:
prev_depth = 2 ** (len(self._cnn_kernels) - (i - 1) - 2) * self._cnn_depth
depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth
act, norm = self._act, self._norm
# Last layer is dist layer
if i == len(self._cnn_kernels) - 1:
depth, act, norm = sum(self.channels.values()), nn.Identity(), 'none'
self._conv_model.append(nn.ConvTranspose2d(prev_depth, depth, kernel, stride=2))
self._conv_model.append(ImgChLayerNorm(depth) if norm == 'layer' else NormLayer(norm, depth))
self._conv_model.append(act)
self._conv_model = nn.Sequential(*self._conv_model)
if len(self.mlp_keys) > 0:
self._mlp_model = []
for i, width in enumerate(self._mlp_layers):
if i == 0:
prev_width = embed_dim
else:
prev_width = self._mlp_layers[i-1]
self._mlp_model.append(nn.Linear(prev_width, width, bias=self._norm != 'none'))
self._mlp_model.append(NormLayer(self._norm, width))
self._mlp_model.append(self._act)
self._mlp_model = nn.Sequential(*self._mlp_model)
for key, shape in { k : shapes[k] for k in self.mlp_keys }.items():
self.add_module(f'dense_{key}', DistLayer(width, shape, dist=self._mlp_dist))
def forward(self, features):
outputs = {}
if self.cnn_keys:
outputs.update(self._cnn(features))
if self.mlp_keys:
outputs.update(self._mlp(features))
return outputs
def _cnn(self, features):
x = self._conv_in(features)
x = x.reshape([-1, 32 * self._cnn_depth, 1, 1,])
x = self._conv_model(x)
x = x.reshape(list(features.shape[:-1]) + list(x.shape[1:]))
if len(x.shape) == 5:
means = torch.split(x, list(self.channels.values()), 2)
else:
means = torch.split(x, list(self.channels.values()), 1)
image_dist = dict(mse=lambda x : MSEDist(x), normal_unit_std=lambda x : D.Independent(D.Normal(x, 1.0), 3))[self._image_dist]
dists = { key: image_dist(mean) for (key, shape), mean in zip(self.channels.items(), means)}
return dists
def _mlp(self, features):
shapes = {k: self._shapes[k] for k in self.mlp_keys}
x = features
x = self._mlp_model(x)
dists = {}
for key, shape in shapes.items():
dists[key] = getattr(self, f'dense_{key}')(x)
return dists
class MLP(Module):
def __init__(self, in_shape, shape, layers, units, act='SiLU', norm='none', **out):
super().__init__()
self._in_shape = in_shape
if out['dist'] == 'twohot':
shape = 255
self._shape = (shape,) if isinstance(shape, int) else shape
self._layers = layers
self._units = units
self._norm = norm
self._act = get_act(act)
self._out = out
last_units = in_shape
for index in range(self._layers):
self.add_module(f'dense{index}', nn.Linear(last_units, units, bias=norm != 'none'))
self.add_module(f'norm{index}', NormLayer(norm, units))
last_units = units
self._out = DistLayer(units, shape, **out)
def forward(self, features):
x = features
x = x.reshape([-1, x.shape[-1]])
for index in range(self._layers):
x = getattr(self, f'dense{index}')(x)
x = getattr(self, f'norm{index}')(x)
x = self._act(x)
x = x.reshape(list(features.shape[:-1]) + [x.shape[-1]])
return self._out(x)
class GRUCell(Module):
def __init__(self, inp_size, size, norm=False, act='Tanh', update_bias=-1, device='cuda', **kwargs):
super().__init__()
self._inp_size = inp_size
self._size = size
self._act = get_act(act)
self._norm = norm
self._update_bias = update_bias
self.device = device
self._layer = nn.Linear(inp_size + size, 3 * size, bias=(not norm), **kwargs)
if norm:
self._norm = nn.LayerNorm(3*size)
def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
return torch.zeros((batch_size), self._size, device=self.device)
@property
def state_size(self):
return self._size
def forward(self, inputs, deter_state):
"""
inputs : non-linear combination of previous stoch and action
deter_state : prev hidden state of the cell
"""
deter_state = deter_state[0] # State is wrapped in a list.
parts = self._layer(torch.cat([inputs, deter_state], -1))
if self._norm:
parts = self._norm(parts)
reset, cand, update = torch.chunk(parts, 3, -1)
reset = torch.sigmoid(reset)
cand = self._act(reset * cand)
update = torch.sigmoid(update + self._update_bias)
output = update * cand + (1 - update) * deter_state
return output, [output]
class DistLayer(Module):
def __init__(
self, in_dim, shape, dist='mse', min_std=0.1, max_std=1.0, init_std=0.0, bias=True):
super().__init__()
self._in_dim = in_dim
self._shape = shape if type(shape) in [list,tuple] else [shape]
self._dist = dist
self._min_std = min_std
self._init_std = init_std
self._max_std = max_std
self._out = nn.Linear(in_dim, int(np.prod(shape)) , bias=bias)
if dist in ('normal', 'tanh_normal', 'trunc_normal'):
self._std = nn.Linear(in_dim, int(np.prod(shape)) )
def forward(self, inputs):
out = self._out(inputs)
out = out.reshape(list(inputs.shape[:-1]) + list(self._shape))
if self._dist in ('normal', 'tanh_normal', 'trunc_normal'):
std = self._std(inputs)
std = std.reshape(list(inputs.shape[:-1]) + list(self._shape))
if self._dist == 'mse':
return MSEDist(out,)
if self._dist == 'normal_unit_std':
dist = D.Normal(out, 1.0)
dist.sample = dist.rsample
return D.Independent(dist, len(self._shape))
if self._dist == 'normal':
mean = torch.tanh(out)
std = (self._max_std - self._min_std) * torch.sigmoid(std + 2.0) + self._min_std
dist = D.Normal(mean, std)
dist.sample = dist.rsample
return D.Independent(dist, len(self._shape))
if self._dist == 'binary':
out = torch.sigmoid(out)
dist = BernoulliDist(out)
return D.Independent(dist, len(self._shape))
if self._dist == 'tanh_normal':
mean = 5 * torch.tanh(out / 5)
std = F.softplus(std + self._init_std) + self._min_std
dist = utils.SquashedNormal(mean, std)
dist = D.Independent(dist, len(self._shape))
return SampleDist(dist)
if self._dist == 'trunc_normal':
mean = torch.tanh(out)
std = 2 * torch.sigmoid((std + self._init_std) / 2) + self._min_std
dist = utils.TruncatedNormal(mean, std)
return D.Independent(dist, 1)
if self._dist == 'onehot':
return OneHotDist(out.float())
if self._dist == 'twohot':
return TwoHotDist(out.float())
if self._dist == 'symlog_mse':
return SymlogDist(out, len(self._shape), 'mse')
raise NotImplementedError(self._dist)
class NormLayer(Module):
def __init__(self, name, dim=None):
super().__init__()
if name == 'none':
self._layer = None
elif name == 'layer':
assert dim != None
self._layer = nn.LayerNorm(dim)
else:
raise NotImplementedError(name)
def forward(self, features):
if self._layer is None:
return features
return self._layer(features)
def get_act(name):
if name == 'none':
return nn.Identity()
elif hasattr(nn, name):
return getattr(nn, name)()
else:
raise NotImplementedError(name)
class Optimizer:
def __init__(
self, name, parameters, lr, eps=1e-4, clip=None, wd=None,
opt='adam', wd_pattern=r'.*', use_amp=False):
assert 0 <= wd < 1
assert not clip or 1 <= clip
self._name = name
self._clip = clip
self._wd = wd
self._wd_pattern = wd_pattern
self._opt = {
'adam': lambda: torch.optim.Adam(parameters, lr, eps=eps),
'nadam': lambda: torch.optim.Nadam(parameters, lr, eps=eps),
'adamax': lambda: torch.optim.Adamax(parameters, lr, eps=eps),
'sgd': lambda: torch.optim.SGD(parameters, lr),
'momentum': lambda: torch.optim.SGD(lr, momentum=0.9),
}[opt]()
self._scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
self._once = True
def __call__(self, loss, params):
params = list(params)
assert len(loss.shape) == 0 or (len(loss.shape) == 1 and loss.shape[0] == 1), (self._name, loss.shape)
metrics = {}
# Count parameters.
if self._once:
count = sum(p.numel() for p in params if p.requires_grad)
print(f'Found {count} {self._name} parameters.')
self._once = False
# Check loss.
metrics[f'{self._name}_loss'] = loss.detach().cpu().numpy()
# Compute scaled gradient.
self._scaler.scale(loss).backward()
self._scaler.unscale_(self._opt)
# Gradient clipping.
if self._clip:
norm = torch.nn.utils.clip_grad_norm_(params, self._clip)
metrics[f'{self._name}_grad_norm'] = norm.item()
# Weight decay.
if self._wd:
self._apply_weight_decay(params)
# # Apply gradients.
self._scaler.step(self._opt)
self._scaler.update()
self._opt.zero_grad()
return metrics
def _apply_weight_decay(self, varibs):
nontrivial = (self._wd_pattern != r'.*')
if nontrivial:
raise NotImplementedError('Non trivial weight decay')
else:
for var in varibs:
var.data = (1 - self._wd) * var.data
class StreamNorm:
def __init__(self, shape=(), momentum=0.99, scale=1.0, eps=1e-8, device='cuda'):
# Momentum of 0 normalizes only based on the current batch.
# Momentum of 1 disables normalization.
self.device = device
self._shape = tuple(shape)
self._momentum = momentum
self._scale = scale
self._eps = eps
self.mag = None # torch.ones(shape).to(self.device)
self.step = 0
self.mean = None # torch.zeros(shape).to(self.device)
self.square_mean = None # torch.zeros(shape).to(self.device)
def reset(self):
self.step = 0
self.mag = None # torch.ones_like(self.mag).to(self.device)
self.mean = None # torch.zeros_like(self.mean).to(self.device)
self.square_mean = None # torch.zeros_like(self.square_mean).to(self.device)
def __call__(self, inputs):
metrics = {}
self.update(inputs)
metrics['mean'] = inputs.mean()
metrics['std'] = inputs.std()
outputs = self.transform(inputs)
metrics['normed_mean'] = outputs.mean()
metrics['normed_std'] = outputs.std()
return outputs, metrics
def update(self, inputs):
self.step += 1
batch = inputs.reshape((-1,) + self._shape)
mag = torch.abs(batch).mean(0)
if self.mag is not None:
self.mag.data = self._momentum * self.mag.data + (1 - self._momentum) * mag
else:
self.mag = mag.clone().detach()
mean = torch.mean(batch)
if self.mean is not None:
self.mean.data = self._momentum * self.mean.data + (1 - self._momentum) * mean
else:
self.mean = mean.clone().detach()
square_mean = torch.mean(batch * batch)
if self.square_mean is not None:
self.square_mean.data = self._momentum * self.square_mean.data + (1 - self._momentum) * square_mean
else:
self.square_mean = square_mean.clone().detach()
def transform(self, inputs):
if self._momentum == 1:
return inputs
values = inputs.reshape((-1,) + self._shape)
values /= self.mag[None] + self._eps
values *= self._scale
return values.reshape(inputs.shape)
def corrected_mean_var_std(self,):
corr = 1 # 1 - self._momentum ** self.step # NOTE: this led to exploding values for first few iterations
corr_mean = self.mean / corr
corr_var = (self.square_mean / corr) - self.mean ** 2
corr_std = torch.sqrt(torch.maximum(corr_var, torch.zeros_like(corr_var, device=self.device)) + self._eps)
return corr_mean, corr_var, corr_std
class RequiresGrad:
def __init__(self, model):
self._model = model
def __enter__(self):
self._model.requires_grad_(requires_grad=True)
def __exit__(self, *args):
self._model.requires_grad_(requires_grad=False)
class RewardEMA:
"""running mean and std"""
def __init__(self, device, alpha=1e-2):
self.device = device
self.alpha = alpha
self.range = torch.tensor([0.05, 0.95]).to(device)
def __call__(self, x, ema_vals):
flat_x = torch.flatten(x.detach())
x_quantile = torch.quantile(input=flat_x, q=self.range)
# this should be in-place operation
ema_vals[:] = self.alpha * x_quantile + (1 - self.alpha) * ema_vals
scale = torch.clip(ema_vals[1] - ema_vals[0], min=1.0)
offset = ema_vals[0]
return offset.detach(), scale.detach()
class ImgChLayerNorm(nn.Module):
def __init__(self, ch, eps=1e-03):
super(ImgChLayerNorm, self).__init__()
self.norm = torch.nn.LayerNorm(ch, eps=eps)
def forward(self, x):
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = x.permute(0, 3, 1, 2)
return x