mazpie's picture
Initial commit
2d9a728
raw
history blame
22.8 kB
import os
import numpy as np
from dm_control.rl import control
from dm_control.suite import common
from dm_control.suite import walker
from dm_control.utils import rewards
from dm_control.utils import io as resources
_TASKS_DIR = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'custom_dmc_tasks')
_YOGA_STAND_HEIGHT = 1.0 # lower than stan height = 1.2
_YOGA_LIE_DOWN_HEIGHT = 0.1
_YOGA_LEGS_UP_HEIGHT = 1.1
_YOGA_FEET_UP_HEIGHT = 0.5
_YOGA_FEET_UP_LIE_DOWN_HEIGHT = 0.35
_YOGA_KNEE_HEIGHT = 0.25
_YOGA_KNEESTAND_HEIGHT = 0.75
_YOGA_SITTING_HEIGHT = 0.55
_YOGA_SITTING_LEGS_HEIGHT = 0.15
# speed from: https://github.com/rll-research/url_benchmark/blob/710c3eb/custom_dmc_tasks/walker.py
_SPIN_SPEED = 5.0
#
class WalkerYogaPoses:
"""
Joint positions for some yoga poses
"""
lie_back = [ -1.2 , 0. , -1.57, 0, 0. , 0.0, 0, -0., 0.0]
lie_front = [-1.2, -0, 1.57, 0, -0.2, 0, 0, -0.2, 0.]
legs_up = [ -1.24 , 0. , -1.57, 1.57, 0. , 0.0, 1.57, -0., 0.0]
kneel = [ -0.5 , 0. , 0, 0, -1.57, -0.8, 1.57, -1.57, 0.0]
side_angle = [ -0.3 , 0. , 0.9, 0, 0, -0.7, 1.87, -1.07, 0.0]
stand_up = [-0.15, 0., 0.34, 0.74, -1.34, -0., 1.1, -0.66, -0.1]
lean_back = [-0.27, 0., -0.45, 0.22, -1.5, 0.86, 0.6, -0.8, -0.4]
boat = [ -1.04 , 0. , -0.8, 1.6, 0. , 0.0, 1.6, -0., 0.0]
bridge = [-1.1, 0., -2.2, -0.3, -1.5, 0., -0.3, -0.8, -0.4]
head_stand = [-1, 0., -3, 0.6, -1, -0.3, 0.9, -0.5, 0.3]
one_foot = [-0.2, 0., 0, 0.7, -1.34, 0.5, 1.5, -0.6, 0.1]
arabesque = [-0.34, 0., 1.57, 1.57, 0, 0., 0, -0., 0.]
# new
high_kick = [-0.165, 3.3 , 5.55 , 1.35 ,-0, +0.5 , -0.7, 0. , 0.2,]
splits = [-0.7, 0., 0.5, -0.7, -1. , 0, 1.75, 0., -0.45 ]
def get_model_and_assets():
"""Returns a tuple containing the model XML string and a dict of assets."""
return resources.GetResource(os.path.join(_TASKS_DIR, 'walker.xml')), common.ASSETS
@walker.SUITE.add('custom')
def walk_backwards(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Walk Backwards task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = BackwardsPlanarWalker(move_speed=walker._WALK_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def run_backwards(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Run Backwards task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = BackwardsPlanarWalker(move_speed=walker._RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def arabesque(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Arabesque task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='arabesque', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def lying_down(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Lie Down task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='lying_down', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def legs_up(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Legs Up task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='legs_up', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def high_kick(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='high_kick', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def one_foot(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='one_foot', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def lunge_pose(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='lunge_pose', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def sit_knees(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='sit_knees', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def headstand(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Headstand task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='flip', move_speed=0, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def urlb_flip(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Flip task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='urlb_flip', move_speed=_SPIN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def flipping(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the flipping task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='flipping', move_speed=2* walker._RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def flip(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Flip task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='flip', move_speed=2* walker._RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
@walker.SUITE.add('custom')
def backflip(time_limit=walker._DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Backflip task."""
physics = walker.Physics.from_xml_string(*get_model_and_assets())
task = YogaPlanarWalker(goal='flip', move_speed=-2 * walker._RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=walker._CONTROL_TIMESTEP,
**environment_kwargs)
class BackwardsPlanarWalker(walker.PlanarWalker):
"""Backwards PlanarWalker task."""
def __init__(self, move_speed, random=None):
super().__init__(move_speed, random)
def get_reward(self, physics):
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
upright = (1 + physics.torso_upright()) / 2
stand_reward = (3*standing + upright) / 4
if self._move_speed == 0:
return stand_reward
else:
move_reward = rewards.tolerance(physics.horizontal_velocity(),
bounds=(-float('inf'), -self._move_speed),
margin=self._move_speed/2,
value_at_margin=0.5,
sigmoid='linear')
return stand_reward * (5*move_reward + 1) / 6
class YogaPlanarWalker(walker.PlanarWalker):
"""Yoga PlanarWalker tasks."""
def __init__(self, goal='arabesque', move_speed=0, random=None):
super().__init__(0, random)
self._goal = goal
self._move_speed = move_speed
def _arabesque_reward(self, physics):
# standing horizontal
# one foot up, same height as torso
# one foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
left_foot_height = physics.named.data.xpos['left_foot', 'z']
right_foot_height = physics.named.data.xpos['right_foot', 'z']
max_foot = 'right_foot' if right_foot_height > left_foot_height else 'left_foot'
min_foot = 'right_foot' if right_foot_height <= left_foot_height else 'left_foot'
min_foot_height = physics.named.data.xpos[min_foot, 'z']
max_foot_height = physics.named.data.xpos[max_foot, 'z']
min_foot_down = rewards.tolerance(min_foot_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_foot_up = rewards.tolerance(max_foot_height,
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
min_foot_x = physics.named.data.xpos[min_foot, 'x']
max_foot_x = physics.named.data.xpos[max_foot, 'x']
correct_foot_pose = 0.1 if max_foot_x > min_foot_x else 1.0
feet_pose = (min_foot_down + max_foot_up * 2) / 3
return standing * feet_pose * correct_foot_pose
def _lying_down_reward(self, physics):
# torso down and horizontal
# thigh and feet down
torso_down = rewards.tolerance(physics.torso_height(),
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
horizontal = 1 - abs(physics.torso_upright())
thigh_height = (physics.named.data.xpos['left_thigh', 'z'] + physics.named.data.xpos['right_thigh', 'z']) / 2
thigh_down = rewards.tolerance(thigh_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
leg_height = (physics.named.data.xpos['left_leg', 'z'] + physics.named.data.xpos['right_leg', 'z']) / 2
leg_down = rewards.tolerance(leg_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
feet_down = rewards.tolerance(feet_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
return (3*torso_down + horizontal + thigh_down + feet_down + leg_down) / 7
def _legs_up_reward(self, physics):
# torso down and horizontal
# legs up with thigh down
torso_down = rewards.tolerance(physics.torso_height(),
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
horizontal = 1 - abs(physics.torso_upright())
torso_down = (3*torso_down +horizontal) / 4
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
feet_up = rewards.tolerance(feet_height,
bounds=(_YOGA_FEET_UP_LIE_DOWN_HEIGHT, float('inf')),
margin=_YOGA_FEET_UP_LIE_DOWN_HEIGHT/2)
return torso_down * feet_up
def _high_kick_reward(self, physics):
# torso up, but lower than standing
# foot up, higher than torso
# foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
left_foot_height = physics.named.data.xpos['left_foot', 'z']
right_foot_height = physics.named.data.xpos['right_foot', 'z']
min_foot_height = min(left_foot_height, right_foot_height)
max_foot_height = max(left_foot_height, right_foot_height)
min_foot_down = rewards.tolerance(min_foot_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_foot_up = rewards.tolerance(max_foot_height,
bounds=(walker._STAND_HEIGHT, float('inf')),
margin=walker._STAND_HEIGHT/2)
feet_pose = (3 * max_foot_up + min_foot_down) / 4
return standing * feet_pose
def _one_foot_reward(self, physics):
# torso up, standing
# foot up higher than foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
left_foot_height = physics.named.data.xpos['left_foot', 'z']
right_foot_height = physics.named.data.xpos['right_foot', 'z']
min_foot_height = min(left_foot_height, right_foot_height)
max_foot_height = max(left_foot_height, right_foot_height)
min_foot_down = rewards.tolerance(min_foot_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_foot_up = rewards.tolerance(max_foot_height,
bounds=(_YOGA_FEET_UP_HEIGHT, float('inf')),
margin=_YOGA_FEET_UP_HEIGHT/2)
return standing * max_foot_up * min_foot_down
def _lunge_pose_reward(self, physics):
# torso up, standing, but lower
# leg up higher than leg down
# horiontal thigh and leg
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_KNEESTAND_HEIGHT, float('inf')),
margin=_YOGA_KNEESTAND_HEIGHT/2)
upright = (1 + physics.torso_upright()) / 2
torso = (3*standing + upright) / 4
left_leg_height = physics.named.data.xpos['left_leg', 'z']
right_leg_height = physics.named.data.xpos['right_leg', 'z']
min_leg_height = min(left_leg_height, right_leg_height)
max_leg_height = max(left_leg_height, right_leg_height)
min_leg_down = rewards.tolerance(min_leg_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_leg_up = rewards.tolerance(max_leg_height,
bounds=(_YOGA_KNEE_HEIGHT, float('inf')),
margin=_YOGA_KNEE_HEIGHT / 2)
max_thigh = 'left_thigh' if max_leg_height == left_leg_height else 'right_thigh'
min_leg = 'left_leg' if min_leg_height == left_leg_height else 'right_leg'
max_thigh_horiz = 1 - abs(physics.named.data.xmat[max_thigh, 'zz'])
min_leg_horiz = 1 - abs(physics.named.data.xmat[min_leg, 'zz'])
legs = (min_leg_down + max_leg_up + max_thigh_horiz + min_leg_horiz) / 4
return torso * legs
def _sit_knees_reward(self, physics):
# torso up, standing, but lower
# foot up higher than foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_SITTING_HEIGHT, float('inf')),
margin=_YOGA_SITTING_HEIGHT/2)
upright = (1 + physics.torso_upright()) / 2
torso_up = (3*standing + upright) / 4
legs_height = (physics.named.data.xpos['left_leg', 'z'] + physics.named.data.xpos['right_leg', 'z']) / 2
legs_down = rewards.tolerance(legs_height,
bounds=(-float('inf'), _YOGA_SITTING_LEGS_HEIGHT),
margin=_YOGA_SITTING_LEGS_HEIGHT*1.5)
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
feet_down = rewards.tolerance(feet_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
l_thigh_foot_distance = max(0.1, abs(physics.named.data.xpos['left_foot', 'x'] - physics.named.data.xpos['left_thigh', 'x'])) - 0.1
r_thigh_foot_distance = max(0.1, abs(physics.named.data.xpos['right_foot', 'x'] - physics.named.data.xpos['right_thigh', 'x'])) - 0.1
close = np.exp(-(l_thigh_foot_distance + r_thigh_foot_distance)/2)
legs = (3 * legs_down + feet_down) / 4
return torso_up * legs * close
def _urlb_flip_reward(self, physics):
standing = rewards.tolerance(physics.torso_height(),
bounds=(walker._STAND_HEIGHT, float('inf')),
margin=walker._STAND_HEIGHT / 2)
upright = (1 + physics.torso_upright()) / 2
stand_reward = (3 * standing + upright) / 4
move_reward = rewards.tolerance(physics.named.data.subtree_angmom['torso'][1], # physics.angmomentum(),
bounds=(_SPIN_SPEED, float('inf')),
margin=_SPIN_SPEED,
value_at_margin=0,
sigmoid='linear')
return stand_reward * (5 * move_reward + 1) / 6
def _flip_reward(self, physics):
thigh_height = (physics.named.data.xpos['left_thigh', 'z'] + physics.named.data.xpos['right_thigh', 'z']) / 2
thigh_up = rewards.tolerance(thigh_height,
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
legs_up = rewards.tolerance(feet_height,
bounds=(_YOGA_LEGS_UP_HEIGHT, float('inf')),
margin=_YOGA_LEGS_UP_HEIGHT/2)
upside_down_reward = (3*legs_up + 2*thigh_up) / 5
if self._move_speed == 0:
return upside_down_reward
move_reward = rewards.tolerance(physics.named.data.subtree_angmom['torso'][1], # physics.angmomentum(),
bounds=(self._move_speed, float('inf')) if self._move_speed > 0 else (-float('inf'), self._move_speed),
margin=abs(self._move_speed)/2,
value_at_margin=0.5,
sigmoid='linear')
return upside_down_reward * (5*move_reward + 1) / 6
def get_reward(self, physics):
if self._goal == 'arabesque':
return self._arabesque_reward(physics)
elif self._goal == 'lying_down':
return self._lying_down_reward(physics)
elif self._goal == 'legs_up':
return self._legs_up_reward(physics)
elif self._goal == 'flip':
return self._flip_reward(physics)
elif self._goal == 'flipping':
self._move_speed = abs(self._move_speed)
pos_rew = self._flip_reward(physics)
self._move_speed = -abs(self._move_speed)
neg_rew = self._flip_reward(physics)
return max(pos_rew, neg_rew)
elif self._goal == 'high_kick':
return self._high_kick_reward(physics)
elif self._goal == 'one_foot':
return self._one_foot_reward(physics)
elif self._goal == 'lunge_pose':
return self._lunge_pose_reward(physics)
elif self._goal == 'sit_knees':
return self._sit_knees_reward(physics)
elif self._goal == 'urlb_flip':
return self._urlb_flip_reward(physics)
else:
raise NotImplementedError(f'Goal {self._goal} is not implemented.')
if __name__ == '__main__':
from dm_control import viewer
import numpy as np
env = sit_knees()
env.task.visualize_reward = True
action_spec = env.action_spec()
def zero_policy(time_step):
print(time_step.reward)
return np.zeros(action_spec.shape)
viewer.launch(env, policy=zero_policy)
# obs = env.reset()
# next_obs, reward, done, info = env.step(np.zeros(6))