Spaces:
Running
on
Zero
Running
on
Zero
import warnings | |
warnings.filterwarnings('ignore', category=DeprecationWarning) | |
import os | |
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1' | |
from pathlib import Path | |
import hydra | |
import numpy as np | |
import torch | |
import wandb | |
from dm_env import specs | |
import tools.utils as utils | |
from tools.logger import Logger | |
from tools.replay import ReplayBuffer, make_replay_loader | |
torch.backends.cudnn.benchmark = True | |
# os.environ['WANDB_API_KEY'] = 'local-1b6c1e2a2fd8d4c98b8c049eb2914dbceccd4b7c' # local-1b6c1e2a2fd8d4c98b8c049eb2914dbceccd4b7c | |
# os.environ['WANDB_BASE_URL'] = 'https://192.168.170.90:443' | |
# os.environ['REQUESTS_CA_BUNDLE'] = '/etc/ssl/certs/ca-certificates.crt' | |
def make_agent(obs_type, obs_spec, action_spec, num_expl_steps, cfg): | |
cfg.obs_type = obs_type | |
cfg.obs_shape = obs_spec.shape | |
cfg.action_shape = action_spec.shape | |
cfg.num_expl_steps = num_expl_steps | |
return hydra.utils.instantiate(cfg) | |
def make_dreamer_agent(obs_space, action_spec, cur_config, cfg): | |
from copy import deepcopy | |
cur_config = deepcopy(cur_config) | |
del cur_config.agent | |
return hydra.utils.instantiate(cfg, cfg=cur_config, obs_space=obs_space, act_spec=action_spec) | |
class Workspace: | |
def __init__(self, cfg, savedir=None, workdir=None): | |
self.workdir = Path.cwd() if workdir is None else workdir | |
print(f'workspace: {self.workdir}') | |
self.cfg = cfg | |
utils.set_seed_everywhere(cfg.seed) | |
self.device = torch.device(cfg.device) | |
# create logger | |
self.logger = Logger(self.workdir, | |
use_tb=cfg.use_tb, | |
use_wandb=cfg.use_wandb) | |
# create envs | |
self.task = task = cfg.task | |
img_size = cfg.img_size | |
import envs.main as envs | |
self.train_env = envs.make(task, cfg.obs_type, cfg.action_repeat, cfg.seed, img_size=img_size, viclip_encode=cfg.viclip_encode, clip_hd_rendering=cfg.clip_hd_rendering) | |
# # create agent | |
self.agent = make_dreamer_agent(self.train_env.obs_space, self.train_env.act_space['action'], cfg, cfg.agent) | |
# get meta specs | |
meta_specs = self.agent.get_meta_specs() | |
# create replay buffer | |
data_specs = (self.train_env.obs_space, | |
self.train_env.act_space, | |
specs.Array((1,), np.float32, 'reward'), | |
specs.Array((1,), np.float32, 'discount')) | |
# create data storage | |
self.replay_storage = ReplayBuffer(data_specs, meta_specs, | |
self.workdir / 'buffer', | |
length=cfg.batch_length, **cfg.replay, | |
device=cfg.device) | |
# create replay buffer | |
self.replay_loader = make_replay_loader(self.replay_storage, | |
cfg.batch_size,) | |
self._replay_iter = None | |
self.timer = utils.Timer() | |
self._global_step = 0 | |
self._global_episode = 0 | |
def global_step(self): | |
return self._global_step | |
def global_episode(self): | |
return self._global_episode | |
def global_frame(self): | |
return self.global_step * self.cfg.action_repeat | |
def replay_iter(self): | |
if self._replay_iter is None: | |
self._replay_iter = iter(self.replay_loader) | |
return self._replay_iter | |
def eval(self): | |
import envs.main as envs | |
eval_env = envs.make(self.task, self.cfg.obs_type, self.cfg.action_repeat, self.cfg.seed, img_size=64,) | |
step, episode, total_reward = 0, 0, 0 | |
eval_until_episode = utils.Until(self.cfg.num_eval_episodes) | |
meta = self.agent.init_meta() | |
while eval_until_episode(episode): | |
time_step, dreamer_obs = eval_env.reset() | |
agent_state = None | |
while not time_step.last(): | |
with torch.no_grad(), utils.eval_mode(self.agent): | |
action, agent_state = self.agent.act(dreamer_obs, | |
meta, | |
self.global_step, | |
eval_mode=True, | |
state=agent_state) | |
time_step, dreamer_obs = eval_env.step(action) | |
total_reward += time_step.reward | |
step += 1 | |
episode += 1 | |
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log: | |
log('episode_reward', total_reward / episode) | |
log('episode_length', step * self.cfg.action_repeat / episode) | |
log('episode', self.global_episode) | |
log('step', self.global_step) | |
def eval_imag_behavior(self,): | |
self.agent._backup_acting_behavior = self.agent._acting_behavior | |
self.agent._acting_behavior = self.agent._imag_behavior | |
self.eval() | |
self.agent._acting_behavior = self.agent._backup_acting_behavior | |
def train(self): | |
# predicates | |
train_until_step = utils.Until(self.cfg.num_train_frames, self.cfg.action_repeat) | |
seed_until_step = utils.Until(self.cfg.num_seed_frames, self.cfg.action_repeat) | |
eval_every_step = utils.Every(self.cfg.eval_every_frames, self.cfg.action_repeat) | |
train_every_n_steps = max(self.cfg.train_every_actions // self.cfg.action_repeat, 1) | |
should_train_step = utils.Every(train_every_n_steps * self.cfg.action_repeat, self.cfg.action_repeat) | |
should_log_scalars = utils.Every(self.cfg.log_every_frames, self.cfg.action_repeat) | |
should_log_visual = utils.Every(self.cfg.visual_every_frames, self.cfg.action_repeat) | |
should_save_model = utils.Every(self.cfg.save_every_frames, self.cfg.action_repeat) | |
episode_step, episode_reward = 0, 0 | |
time_step, dreamer_obs = self.train_env.reset() | |
agent_state = None | |
meta = self.agent.init_meta() | |
data = dreamer_obs | |
self.replay_storage.add(data, meta) | |
metrics = None | |
while train_until_step(self.global_step): | |
if time_step.last(): | |
self._global_episode += 1 | |
# wait until all the metrics schema is populated | |
if metrics is not None: | |
# log stats | |
elapsed_time, total_time = self.timer.reset() | |
episode_frame = episode_step * self.cfg.action_repeat | |
with self.logger.log_and_dump_ctx(self.global_frame, | |
ty='train') as log: | |
log('fps', episode_frame / elapsed_time) | |
log('total_time', total_time) | |
log('episode_reward', episode_reward) | |
log('episode_length', episode_frame) | |
log('episode', self.global_episode) | |
log('buffer_size', len(self.replay_storage)) | |
log('step', self.global_step) | |
if should_save_model(self.global_step): | |
# save last model | |
self.save_last_model() | |
# reset env | |
time_step, dreamer_obs = self.train_env.reset() | |
# Updating agent | |
agent_state = None # Resetting agent's latent state | |
meta = self.agent.init_meta() | |
data = dreamer_obs | |
self.replay_storage.add(data, meta) | |
episode_step = 0 | |
episode_reward = 0 | |
# try to evaluate | |
if eval_every_step(self.global_step): | |
if self.cfg.eval_modality == 'task': | |
self.eval() | |
if self.cfg.eval_modality == 'task_imag': | |
self.eval_imag_behavior() | |
if self.cfg.eval_modality == 'from_text': | |
self.logger.log('eval_total_time', self.timer.total_time(), | |
self.global_frame) | |
self.eval_from_text() | |
meta = self.agent.update_meta(meta, self.global_step, time_step) | |
# sample action | |
with torch.no_grad(), utils.eval_mode(self.agent): | |
if seed_until_step(self.global_step): | |
action = self.train_env.act_space['action'].sample() | |
if getattr(self.cfg, 'discrete_actions', False): | |
action = (action == np.max(action)).astype(np.float32) # one-hot | |
else: | |
action, agent_state = self.agent.act(dreamer_obs, # time_step.observation | |
meta, | |
self.global_step, | |
eval_mode=False, | |
state=agent_state) | |
# try to update the agent | |
if not seed_until_step(self.global_step): | |
if should_train_step(self.global_step): | |
# prof.step() | |
# Sampling data | |
batch_data = next(self.replay_iter) | |
if hasattr(self.agent, ' update_wm'): | |
state, outputs, metrics = self.agent.update_wm(batch_data, self.global_step) | |
if hasattr(self.agent, "update_acting_behavior"): | |
metrics = self.agent.update_acting_behavior(state=state, outputs=outputs, metrics=metrics, data=batch_data)[1] | |
if hasattr(self.agent, "update_imag_behavior"): | |
metrics.update(self.agent.update_imag_behavior(state=state, outputs=outputs, metrics=metrics, seq_data=batch_data,)[1]) | |
else: | |
outputs, metrics = self.agent.update(batch_data, self.global_step) | |
if should_log_scalars(self.global_step): | |
self.logger.log_metrics(metrics, self.global_frame, ty='train') | |
if self.global_step > 0 and should_log_visual(self.global_step): | |
if hasattr(self.agent, 'report'): | |
with torch.no_grad(), utils.eval_mode(self.agent): | |
videos = self.agent.report(next(self.replay_iter)) | |
self.logger.log_visual(videos, self.global_frame) | |
# take env step | |
time_step, dreamer_obs = self.train_env.step(action) | |
episode_reward += time_step.reward | |
data = dreamer_obs | |
if time_step.last(): | |
if getattr(self.train_env, "accumulate", False): | |
assert not self.replay_storage._ongoing | |
# NOTE: this is ok as it comes right after adding to the repl | |
accumulated_data, accumulated_key = self.train_env.process_accumulate() | |
data[accumulated_key] = accumulated_data[-1] | |
self.replay_storage._ongoing_eps[0][accumulated_key][-len(accumulated_data[:-1]):] = accumulated_data[:-1] | |
self.replay_storage.add(data, meta) | |
episode_step += 1 | |
self._global_step += 1 | |
def save_snapshot(self): | |
snapshot = self.get_snapshot_dir() / f'snapshot_{self.global_frame}.pt' | |
keys_to_save = ['agent', '_global_step', '_global_episode'] | |
payload = {k: self.__dict__[k] for k in keys_to_save} | |
with snapshot.open('wb') as f: | |
torch.save(payload, f) | |
def setup_wandb(self): | |
cfg = self.cfg | |
exp_name = '_'.join([ | |
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type, | |
str(cfg.seed) | |
]) | |
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name) | |
flat_cfg = utils.flatten_dict(cfg) | |
wandb.config.update(flat_cfg) | |
self.wandb_run_id = wandb.run.id | |
def save_last_model(self): | |
snapshot = self.root_dir / 'last_snapshot.pt' | |
if snapshot.is_file(): | |
temp = Path(str(snapshot).replace("last_snapshot.pt", "second_last_snapshot.pt")) | |
os.replace(snapshot, temp) | |
keys_to_save = ['agent', '_global_step', '_global_episode'] | |
if self.cfg.use_wandb: | |
keys_to_save.append('wandb_run_id') | |
payload = {k: self.__dict__[k] for k in keys_to_save} | |
with snapshot.open('wb') as f: | |
torch.save(payload, f) | |
def load_snapshot(self, snapshot_dir): | |
try: | |
snapshot = snapshot_dir / 'last_snapshot.pt' | |
with snapshot.open('rb') as f: | |
payload = torch.load(f) | |
except: | |
snapshot = snapshot_dir / 'second_last_snapshot.pt' | |
with snapshot.open('rb') as f: | |
payload = torch.load(f) | |
for k,v in payload.items(): | |
setattr(self, k, v) | |
if k == 'wandb_run_id': | |
assert wandb.run is None | |
cfg = self.cfg | |
exp_name = '_'.join([ | |
cfg.experiment, cfg.agent.name, cfg.task, cfg.obs_type, | |
str(cfg.seed) | |
]) | |
wandb.init(project=cfg.project_name, group=cfg.agent.name, name=exp_name, id=v, resume="must") | |
def get_snapshot_dir(self): | |
snap_dir = self.cfg.snapshot_dir | |
snapshot_dir = self.workdir / Path(snap_dir) | |
snapshot_dir.mkdir(exist_ok=True, parents=True) | |
return snapshot_dir | |
def main(cfg): | |
from collect_data import Workspace as W | |
root_dir = Path.cwd() | |
cfg.workdir = str(root_dir) | |
workspace = W(cfg) | |
workspace.root_dir = root_dir | |
snapshot = workspace.root_dir / 'last_snapshot.pt' | |
if snapshot.exists(): | |
print(f'resuming: {snapshot}') | |
workspace.load_snapshot(workspace.root_dir) | |
if cfg.use_wandb and wandb.run is None: | |
# otherwise it was resumed | |
workspace.setup_wandb() | |
workspace.train() | |
if __name__ == '__main__': | |
main() | |