File size: 6,963 Bytes
c9baa67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""
This code is adapted from: https://github.com/wielandbrendel/bag-of-local-features-models
"""

import torch.nn as nn
import math
import torch
from collections import OrderedDict
from torch.utils import model_zoo

from .normalizer import Normalizer


import os
dir_path = os.path.dirname(os.path.realpath(__file__))

__all__ = ['bagnet9', 'bagnet17', 'bagnet33']

model_urls = {
    'bagnet9': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet8-34f4ccd2.pth.tar',
    'bagnet17': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet16-105524de.pth.tar',
    'bagnet33': 'https://bitbucket.org/wielandbrendel/bag-of-feature-pretrained-models/raw/249e8fa82c0913623a807d9d35eeab9da7dcc2a8/bagnet32-2ddd53ed.pth.tar',
}


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, kernel_size=1):
        super(Bottleneck, self).__init__()
        # print('Creating bottleneck with kernel size {} and stride {} with padding {}'.format(kernel_size, stride, (kernel_size - 1) // 2))
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=kernel_size, stride=stride,
                               padding=0, bias=False) # changed padding from (kernel_size - 1) // 2
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x, **kwargs):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        if residual.size(-1) != out.size(-1):
            diff = residual.size(-1) - out.size(-1)
            residual = residual[:,:,:-diff,:-diff]

        out += residual
        out = self.relu(out)

        return out


class BagNet(nn.Module):

    def __init__(self, block, layers, strides=[1, 2, 2, 2], kernel3=[0, 0, 0, 0], num_classes=1000, avg_pool=True):
        self.inplanes = 64
        super(BagNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=1, stride=1, padding=0,
                               bias=False)
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64, momentum=0.001)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], kernel3=kernel3[0], prefix='layer1')
        self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], kernel3=kernel3[1], prefix='layer2')
        self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], kernel3=kernel3[2], prefix='layer3')
        self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], kernel3=kernel3[3], prefix='layer4')
        self.avgpool = nn.AvgPool2d(1, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)
        self.avg_pool = avg_pool
        self.block = block

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

    def _make_layer(self, block, planes, blocks, stride=1, kernel3=0, prefix=''):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        kernel = 1 if kernel3 == 0 else 3
        layers.append(block(self.inplanes, planes, stride, downsample, kernel_size=kernel))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            kernel = 1 if kernel3 <= i else 3
            layers.append(block(self.inplanes, planes, kernel_size=kernel))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.avg_pool:
            x = nn.AvgPool2d(x.size()[2], stride=1)(x)
            x = x.view(x.size(0), -1)
            x = self.fc(x)
        else:
            x = x.permute(0,2,3,1)
            x = self.fc(x)

        return x

def bagnet33(pretrained=False, strides=[2, 2, 2, 1], **kwargs):
    """Constructs a Bagnet-33 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,1,1], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['bagnet33']))
    return model

def bagnet17(pretrained=False, strides=[2, 2, 2, 1], **kwargs):
    """Constructs a Bagnet-17 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,1,0], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['bagnet17']))
    return model

def bagnet9(pretrained=False, strides=[2, 2, 2, 1], **kwargs):
    """Constructs a Bagnet-9 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = BagNet(Bottleneck, [3, 4, 6, 3], strides=strides, kernel3=[1,1,0,0], **kwargs)
    if pretrained:
        model.load_state_dict(model_zoo.load_url(model_urls['bagnet9']))
    return model

# --- DeepGaze Adaptation ----




class RGBBagNet17(nn.Sequential):
    def __init__(self):
        super(RGBBagNet17, self).__init__()
        self.bagnet = bagnet17(pretrained=True, avg_pool=False)
        self.normalizer = Normalizer()
        super(RGBBagNet17, self).__init__(self.normalizer, self.bagnet)


class RGBBagNet33(nn.Sequential):
    def __init__(self):
        super(RGBBagNet33, self).__init__()
        self.bagnet = bagnet33(pretrained=True, avg_pool=False)
        self.normalizer = Normalizer()
        super(RGBBagNet33, self).__init__(self.normalizer, self.bagnet)