from collections import OrderedDict import numpy as np import torch import torch.nn as nn import torchvision from .normalizer import Normalizer class RGBResNext50(nn.Sequential): def __init__(self): super(RGBResNext50, self).__init__() self.resnext = torch.hub.load('facebookresearch/WSL-Images', 'resnext50_32x16d_wsl') self.normalizer = Normalizer() super(RGBResNext50, self).__init__(self.normalizer, self.resnext) class RGBResNext101(nn.Sequential): def __init__(self): super(RGBResNext101, self).__init__() self.resnext = torch.hub.load('facebookresearch/WSL-Images', 'resnext101_32x16d_wsl') self.normalizer = Normalizer() super(RGBResNext101, self).__init__(self.normalizer, self.resnext)