Added more Models
Browse files- app.py +8 -2
- examples/14.jpg +0 -0
- examples/15.jpg +0 -0
app.py
CHANGED
@@ -45,6 +45,9 @@ MODELS = {
|
|
45 |
"Pelvis X-ray Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_pelvis_xray.pt"),
|
46 |
"Road Signs Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_road_signs.pt"),
|
47 |
"Pizza Toppings Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_pizza.pt"),
|
|
|
|
|
|
|
48 |
}
|
49 |
|
50 |
|
@@ -65,6 +68,9 @@ EXAMPLE_DICT = {
|
|
65 |
"Pelvis X-ray Detection (YOLO11m)": example_dir + "12.jpg",
|
66 |
"Road Signs Detection (YOLO11m)": example_dir + "13.jpg",
|
67 |
"Pizza Toppings Detection (YOLO11m)": example_dir + "10.jpg",
|
|
|
|
|
|
|
68 |
}
|
69 |
|
70 |
LABEL_ANNOTATORS = sv.LabelAnnotator()
|
@@ -112,7 +118,7 @@ yolo_11s_confidence_threshold_component = gr.Slider(
|
|
112 |
maximum=1.0,
|
113 |
value=0.3,
|
114 |
step=0.01,
|
115 |
-
label="
|
116 |
info=(
|
117 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
118 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
@@ -161,7 +167,7 @@ with gr.Blocks() as demo:
|
|
161 |
|
162 |
with gr.Row():
|
163 |
image_input_component = gr.Image(type='pil', label='Input Image')
|
164 |
-
yolo_11s_output_component = gr.Image(type='pil', label='
|
165 |
|
166 |
submit_button = gr.Button(value='Submit', scale=1, variant='primary')
|
167 |
|
|
|
45 |
"Pelvis X-ray Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_pelvis_xray.pt"),
|
46 |
"Road Signs Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_road_signs.pt"),
|
47 |
"Pizza Toppings Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_pizza.pt"),
|
48 |
+
"Pelvis X-ray Segmentation (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_seg_pelvis_xray.pt"),
|
49 |
+
"Teeth X-ray Segmentation (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_seg_teeth_xray.pt"),
|
50 |
+
"Football Players Detection (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_football_players.pt"),
|
51 |
}
|
52 |
|
53 |
|
|
|
68 |
"Pelvis X-ray Detection (YOLO11m)": example_dir + "12.jpg",
|
69 |
"Road Signs Detection (YOLO11m)": example_dir + "13.jpg",
|
70 |
"Pizza Toppings Detection (YOLO11m)": example_dir + "10.jpg",
|
71 |
+
"Pelvis X-ray Segmentation (YOLO11s)": example_dir + "12.jpg",
|
72 |
+
"Teeth X-ray Segmentation (YOLO11s)": example_dir + "14.jpg",
|
73 |
+
"Football Players Detection (YOLO11s)": example_dir + "15.jpg",
|
74 |
}
|
75 |
|
76 |
LABEL_ANNOTATORS = sv.LabelAnnotator()
|
|
|
118 |
maximum=1.0,
|
119 |
value=0.3,
|
120 |
step=0.01,
|
121 |
+
label="YOLO Confidence Threshold",
|
122 |
info=(
|
123 |
"The confidence threshold for the YOLO model. Lower the threshold to "
|
124 |
"reduce false negatives, enhancing the model's sensitivity to detect "
|
|
|
167 |
|
168 |
with gr.Row():
|
169 |
image_input_component = gr.Image(type='pil', label='Input Image')
|
170 |
+
yolo_11s_output_component = gr.Image(type='pil', label='YOLO Output')
|
171 |
|
172 |
submit_button = gr.Button(value='Submit', scale=1, variant='primary')
|
173 |
|
examples/14.jpg
ADDED
![]() |
examples/15.jpg
ADDED
![]() |