rutsam commited on
Commit
6cced05
·
1 Parent(s): 202328f

deploy new code

Browse files
Files changed (3) hide show
  1. app.py +31 -3
  2. package.txt +3 -0
  3. requirements.txt +4 -1
app.py CHANGED
@@ -1,7 +1,35 @@
1
  import gradio as gr
 
 
 
 
2
 
 
 
3
 
4
- from transformers import pipeline
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- pipe = pipeline("models/mbazaNLP/Kinyarwanda_nemo_stt_conformer_model")
7
- gr.Interface.from_pipeline(pipe).launch()
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import nemo.collections.asr as nemo_asr
3
+ from pydub import AudioSegment
4
+ import pyaudioconvert as pac
5
+ import timeit
6
 
7
+ hf_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(
8
+ model_name="mbazaNLP/Kinyarwanda_nemo_stt_conformer_model")
9
 
10
+ def convert (audio):
11
+ file_name = audio.name
12
+ if file_name.endswith("mp3") or file_name.endswith("wav") or file_name.endswith("ogg"):
13
+ if file_name.endswith("mp3"):
14
+ sound = AudioSegment.from_mp3(audio.name)
15
+ sound.export(audio.name, format="wav")
16
+ elif file_name.endswith("ogg"):
17
+ sound = AudioSegment.from_ogg(audio.name)
18
+ sound.export(audio.name, format="wav")
19
+ else:
20
+ return False
21
+ pac.convert_wav_to_16bit_mono(audio.name,audio.name)
22
+ return True
23
 
24
+ def transcribe(audio):
25
+ start = timeit.default_timer()
26
+ if convert(audio)== False:
27
+ return "The format must be mp3,wav and ogg"
28
+
29
+ files = [audio.name]
30
+ print(audio.name)
31
+ for fname, transcription in zip(files, hf_model.transcribe(paths2audio_files=files)):
32
+ stop = timeit.default_timer()
33
+ return "message"+ transcription[0]+ "\nfilename"+ audio.name+"\nTrancriptionTime"+stop-start
34
+
35
+ gradio_ui.launch()
package.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ libsndfile1
2
+ ffmpeg
3
+ sox
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- transformers
 
 
 
 
1
+ pydub
2
+ pyaudioconvert
3
+ nemo_toolkit[asr]
4
+ gradio